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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study  

Water is nature's most valuable resource, and due to rising demand, fresh water supply 

is in risk of becoming non-renewable (Kim et al., 2008). Water covers over 71 percent 

of the Earth's surface. However, only 3% of this is fresh water, with the remaining 2.5% 

trapped in ice and glaciers. As a result, individuals must rely on 0.5% fresh water for 

all of their needs (Kashid & Pardeshi, 2014). Inland surface water bodies, such as lakes, 

reservoirs, creeks, streams, and rivers, are essential to our daily lives. Inland surface 

water sources provided the majority of the water needed for thermoelectric generation, 

public supply, agriculture, mining, and industrial purposes (Kenny et al., 2009).  

The geographical and temporal patterns of water resource distribution are essential 

knowledge for water resource management and assessments of water vulnerability. 

River discharge is an important variable in hydrological studies and applications such 

as global change monitoring, flood risk assessments, water supply management, dam 

design, irrigation projects and many more (Van Dijk et al., 2016). River discharge 

monitoring is also important for establishing a better knowledge of changes in the water 

cycle and hydrological processes at river-basin scales and globally because of natural 

disasters and anthropogenic activities (Robert Brakenridge et al., 2012). The level of 

water bodies is a major concern when it comes to managing and monitoring inland 

water resources. 

Mostly, estimation of river discharge has relied on network of gauging stations 

measuring water levels which capture data on water level at precise time intervals (Shi 

et al., 2020). In-situ networks of gauges that record water level at fixed points in rivers 

and lakes limits number of measurements of inland water bodies. The spatial 

distribution of gauge stations, on the other hand, is significantly uneven. In-situ gauge 

network implementation varies by location accessibility, and data availability is 

determined by national policies. It is also difficult and expensive to set up and maintain 

these networks in remote areas. Furthermore, the precision of readings is largely reliant 

on the processing method used and the current state of water bodies. During flood 

seasons and other extreme events, gauge stations are particularly vulnerable 
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(Biancamaria et al., 2010). Figure 1-1 depicts the global distribution of hydrologic 

gauges and their insufficient monitoring capability. 

Figure 1-1 

Global Distribution of Hydrologic Gauges (GRDC Data Portal) 

 

Due to a lack of reliable measurements and insufficient in-situ gauge stations, an 

accessible and repeatable approach is a must for monitoring river discharge variations. 

Estimating river stage and discharge based on satellite-measured water level and 

inundation area is a reasonably easy and alternative method to overcome this issue 

(Huang et al., 2018). Broadly, use of remote sensing in discharge estimation are 

grouped into three categories: first category also called rating curve method uses stage-

discharge relationship developed from remotely sensed water level or inundated areas 

with simultaneously collected in-situ data for discharge estimation, second category 

uses river water level or width from remote sensing data as input parameter or reference 

for calibration in hydrological or hydraulic models and third category also called remote 

sensing driven method uses remote sensing data as major input for estimation of river 

discharge (Shi et al., 2020).  

Various studies have been carried out demonstrating applicability of satellite altimetry 

water level to estimate river discharge (Birkinshaw et al., 2010; Bogning et al., 2018; 

Calmant & Seyler, 2006; Jiang et al., 2017). However, the temporal resolution of water 

level and discharge is limited to 10 days (Topex/Poseidon, Jason 1/2/3) or 35 days 

(EnviSat, SARAL/ALTIKA) due to repeat period of satellite orbit (Tarpanelli, Barbetta, 
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et al., 2013). Moreover, use of optical sensors and passive microwave sensors in 

discharge estimation cannot be discarded since they have less revisit time almost daily 

and large coverage area. The reflectance ratio of land and water body (C/M) from Near 

Infrared (NIR) band of Moderate Resolution Imaging Spectroradiometer (MODIS), 

Landsat, Advanced Microwave Scanning Radiometer for the Earth Observing System 

(AMSR-E) and Global Flood Detection System (GFDS) has been successfully used as 

proxy for river discharge estimation (Brakenridge et al., 2005; Hou et al., 2018; 

Tarpanelli et al., 2019). Cloudy sky hinders the usability of optical sensors data which 

may result in data outages in measurements and the possible way to overcome is to use 

multi-mission satellite products to increase sample size (Tarpanelli et al., 2019).  

Thus, optical sensor data can be merged with altimetry data to catch information 

affected by cloudy sky for optical sensors and to improve temporal sampling. Artificial 

Neuron Networks (ANNs) are used largely in remote sensing applications since they 

offer an easy but effective possibility of merging input data from different sources into 

the same retrieval algorithm.  

1.2 Statement of the Problem 

Water supply planning and management, reservoir management and control, 

hydropower generation, flood prediction and control, understanding the global water 

cycle, and other hydrological applications all require accurate measurements of river 

discharge. To get an accurate measurement of discharge, most rivers require a series of 

flow velocity measurements in each sector of the cross section. Also, river discharge is 

frequently obtained from river stage measurements using the stage-discharge rating 

(SDR) curve to save expense, effort, and time. At several points along the river, in-situ 

gauge station would offer continuous and dependable river stage measurements (Liu et 

al., 2016).  

However, erosion and sediment deposition processes in river channels and riverbanks 

constantly alter the geometry of channels, the stage-discharge relationship changes over 

time. As a result, a periodic comparison of the SDR curves to direct observations is 

required and hence river gauging stations are expensive, labor-intensive, and time-

consuming to maintain (Pan, 2013). On other hand, the number of gauging stations has 

dropped on a global basis, which is especially problematic in the face of hydrological 
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regimes that have altered dramatically in recent years or will do so in the future due to 

climate change (Arnell & Gosling, 2013; Fekete & Vörösmarty, 2007.). Mekong is one 

of the such basin whose hydrology is altered due to impact of climate change and 

hydropower developments (Hoang et al., 2016).  

Due to the length and remoteness of the Mekong River, installing and maintaining 

adequate gauge stations to monitor the whole river would be difficult. Other concerns 

in such transboundary river basin related to economic/political restrictions/data delay, 

for example, would result in data inaccessibility in certain locations and hence the 

practicality of obtaining timely and continuous observations at many points along the 

river continues to be a problem (Liu et al., 2016). Thus, spaceborne sensors can be 

utilized to address this situation because of the expanding number of earth observation 

satellites and their improved temporal and geographical resolution. Moreover, a 

regional model of Lancang Mekong River if developed utilizing the available in-situ 

data in different river reach and data obtained from satellite sensors will help to estimate 

discharge in ungauged reaches of the river.   

1.3 Research Questions 

1. What will be the performance of Remote Sensing in river discharge estimation? 

2. What is the spatial and temporal variation of discharge in ungauged reach of 

Lancang Mekong River? 

1.4 Objectives of the Study 

The main objective of this research is to utilize multisource remote sensing datasets for 

river discharge estimation in the Lancang Mekong River Basin (LMRB).  

To achieve this main objective, following specific objectives are set:  

i. To produce time series water level coping with the limitations of temporal and 

spatial resolution of satellite altimetry.  

ii. To use machine learning approach for daily discharge estimation by merging 

satellite optical sensor data and altimetry data.  

iii. To predict the river discharge at ungauged locations and analyze its spatial and 

temporal variation in LMRB.  
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1.5 Scope and limitations of the Study  

i. This study uses eight in-situ station data for developing a regional model for 

estimation of river discharge using remote sensing. 

ii. The artificial neural network Long Short-Term Memory (LSTM) will be used 

in the study. 

iii. Daily water level obtained from satellite altimetry products Jason-1/2, Envisat, 

Saral and reflectance ratio of dry and wet pixel obtained from MODIS will be 

used as input to LSTM model.  

iv. The results of the study will rely on quality and quantity of secondary data. 
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CHAPTER 2 

LITERATURE REVIEW  

2.1 Importance of Monitoring River Flow 

Monitoring and quantifying river flow is crucial for future forecasting as well as for the 

sustainable management of this valuable resource (E. Zakharova et al., 2020). Demand 

for more accurate, high frequency, and accessible water data is increasing because of 

growing populations and rival water priorities, including the preservation and 

restoration of aquatic ecosystems.(Hirsch & Costa, 2004; Arnell & Gosling, 2013). 

Numerous significant applications across a variety of scales necessitate an 

understanding of river discharge, including global water balances, engineering design, 

flood predictions, reservoir operations, navigation, water supply, recreation, and 

environmental management (Gravelle, 2015). For freshwater ecosystems, river flow 

regimes, such as long-term average flows, seasonality, low flows, high flows, and other 

forms of flow variability, are crucial (Arnell & Gosling, 2013).  

Around the final quarter of the 19th century, technology developed hydroelectricity, 

and as a result, regular measurements of river flow started to spread globally to 

advantageous locations to gather data that would help with river discharge forecasting, 

ensuring continuous power production and water volumes in line with demand 

(Depetris, 2021). However, the present environmental/ climate catastrophe has 

introduced new difficulties to the initial uncomplicated objectives. In addition to 

altering precipitation patterns and the frequency of extreme weather events, climate 

change also introduces non-stationary characteristics to river flow series (Arnell & 

Gosling, 2013). Therefore, building solid hydrological data bases is even more crucial 

so that river management for flood control, water shortage, and water quality 

maintenance may be based on careful observations of the frequency and intensity of 

river flows (Derecki & Quinn, 1987).  

It is important emphasizing here that, Oceania and Africa, for example, account for 

more than half of the rivers for which Milliman & Farnsworth, (2011) in their well-

known synthesis, could find no hydrological data. Maintaining global river discharge 

databases is a challenging task and despite major improvements since river flow 

measurement began, the extensive gauging network is still far from perfect (Milliman 

& Farnsworth, 2011). For instance, the Global Runoff Data Centre (GRDC) only 



 

 7 

includes a limited number of stations that are mostly determined by the participating 

nations. Additionally, hydrological data is often insufficient or partial, and changes that 

occur over time in gauging networks could be undetected (Depetris, 2021). 

2.2 Measurement Methods of Stream Discharge 

Discharge measurements are carried out in natural watercourses to calculate the surface 

outflow of a basin, its periodic variability, and its outflow characteristics. Data on 

stream flow must be collected in a cohesive way, for a consistent period, with an 

assessment of the accuracy and uncertainty involved (Tazioli, 2011). The various 

methods of discharge estimation includes stream gauging using stage and rating curves, 

velocity point measurements and dilution gauging and use of current meters (Gravelle, 

2015). Most hydrometric stations have a staff gauge, which continually records data 

during predetermined time intervals. The water level data may be transformed into data 

on river discharge using a stage-discharge relationship. While analytical formulae may 

be used to explain these relationships, it is preferable to collect experimental data and 

calibrate it using actual river discharge measurements (Perumal et al., 2007).  

Obtaining mean flow velocity of the section, the traditional methods is carried out by 

submerging a current meter in several spots of a river cross-section (Tazioli, 2011). 

However, some problem arises in very high discharge, when water depth is insufficient 

for immersion of the equipment or flow velocity is lower than the minimum required, 

in case of turbulence. An alternative for these conditions is the artificial tracing method 

which is the use of radioactive substances or chemicals like sodium chloride 

(Florkowski et al., 1969).  

To address the gap of on-site measurements, alternative methods of streamflow 

prediction and monitoring; modeling and satellite observations, have been rapidly 

developed. While satellite observation may give global views, hydrological modeling 

is a powerful tool for providing insights at regional or basin scales (E. Zakharova et al., 

2020). Since river discharge cannot be monitored directly due to its nature, observations 

of other hydraulic variables, such as water level, flow velocity, water extent, and slope, 

both satellite and conventional monitoring methods is used to calculate river discharge 

(Bjerklie et al., 2005).   
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2.3 Applicability of Remote Sensing in Stream Discharge Estimation 

Remote sensing has developed as a reliable source of observations during the recent 

years, especially in regions of the world with scarce in situ networks (Bjerklie et al., 

2018). There is currently no satellite-based technique that can measure river discharge 

directly. In order to estimate stream discharge, the use of remotely sensed hydraulic 

characteristics such water-surface width, gradient, and elevation has been investigated 

by many researchers (Bjerklie et al., 2005; Dingman & Bjerklie, 2005; Leon et al., 

2006; Zakharova et al., 2020). Thus, satellite remote sensing is used to estimate a 

variety of hydrological status variables and fluxes. Though satellite remote sensing 

systems may make continuous and up-to-date measurements with broad area coverage 

depending on the orbital features of the platform, they depend on in-situ observations 

for algorithm development and validation (Tang et al., 2009).  

Contrary to popular belief, remote sensing does not aim to completely replace gauges 

in discharge estimation (Gleason & Durand, 2020). Remote sensing for discharge 

estimation is therefore used for substitute of different purpose:  

▪ At the mercy of politics and economics, gauges that exist now might not exist 

tomorrow.  

▪ Remote Sensing signals are able to expand point gauge measurements in space 

and time due to high gauge calibration data.  

▪ Water resources may be documented using Remote Sensing for Discharge in a 

variety of channel configurations and during times of flooding, which are 

challenges for gauges.  

▪ Another area where Remote Sensing for Discharge may excel is with 

discontinued gauges, as these gauges can be calibrated and then utilized to 

parameterize models as they advance into the future.  

▪ When creating a primary data source for usage in locations that are not well 

monitored, remote sensing might be utilized to prepare inaccurate data.  

Bjerklie et al. (2003) assessed the possibilities of the various satellite data sources, 

described a variety of methods for using remote sensing to calculate river flow, and 

thought about the possibility of computing river discharge exclusively from remotely 

sensed data sources. In comparison to other models that merely contain width and slope 
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or width, slope and velocity, the authors contend that models based on these parameters 

are often more accurate, especially for big rivers.  

Lin et al. (2019) created a cogent worldwide reanalysis of daily river discharge at 

approximately three million river reaches using a considerable amount of ground and 

remote sensing data (mostly for precipitation and evapotranspiration) along with the 

most recent advances in remote sensing hydrography. The power of remote sensing for 

global hydrologic modeling is illustrated by the level of temporal and spatial precision 

that has never before been attained. Lin et al. (2019) employed a calibration strategy 

that takes uncertainty into account, calibrating with gauges when available, remote 

sensing products when gauges are not, and reanalysis data when remote sensing and 

gauges are both accessible. This makes it feasible to produce discharge that wouldn't 

be possible without the use of remote sensing by making the best use possible of both 

in situ and remote sensing data. 

Recent studies have shown that remote sensing has a strong spatial coverage and a 

longer monitoring period, both of which have driven an increase in interest in using 

remote sensing to predict discharge (Garkoti & Kundapura, 2021; Huang et al., 2018; 

Mengen et al., 2020; Sichangi et al., 2016). 

2.4 Estimation of Water Level and Discharge Using Satellite Altimetry 

Water levels in big rivers, lakes, and floodplains have been continuously monitored by 

satellite altimetry, and a time series spanning more than 25 years is now available (Papa 

et al., 2010). Several studies have demonstrated the capability of using satellite 

altimetry for estimating river discharge in medium to large rivers (with a width of few 

kilometers), including the Po River, Italy (Tarpanelli, Barbetta, et al., 2013), Niger 

River (Tourian et al., 2017), Ob River (Kouraev et al., 2004) and several location is 

Amazon river (E. A. Zakharova et al., 2006) with the use of rating curve developed by 

correlating altimetry river water level with in-situ measurements of river discharge or 

development of models.  

Thus, the monitoring of river water levels has benefited from recent advancements in 

radar altimetry technology, and the increasing accuracy of the sensors supports their 

use as a validation tool for a variety of applications, from basic routing strategies to 

complex hydraulic models. Though the altimetry mission's spatial-temporal sampling 
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is a limitation (Tarpanelli et al., 2019). When the satellite ground track repeats (10-day 

TOPEX/Poseidon and Jason; 35-day ERS-2 and ENVISAT), this may be viewed as a 

space-borne virtual gauge that measures temporally distinct river channel stages. The 

upcoming Surface Water and Ocean Topography (SWOT) satellite mission will 

enhance the temporal and geographical coverage in the future (Birkinshaw et al., 2014).  

Chen et al. (1998) demonstrated how models may be integrated with remote sensing to 

produce discharge using data from the Topex/Poseidon satellite to observe sea level 

changes and comprehend anomalies in sea surface heights. According to their 

argument, monitoring ocean anomalies can help us comprehend the necessary 

adjustments to the global hydrologic cycle that led to such anomalies if the ocean is the 

ultimate repository for all terrestrial water. 

Birkinshaw et al. (2010) highlighted the possibility of employing remote sensing, such 

as SAR, to give information on the channel cross sections by combining altimetry data 

with in-situ observed channel cross sections to predict discharge at an ungauged 

location. The approach makes use of the cross-sectional regions upstream and 

downstream; altimetry provides the height variation and in situ or remote sensing data 

provides the river geomorphology. Remote sensing data in particular may be utilized to 

provide a time series of river width, which when combined with altimetry results in the 

cross-sectional area at the sub-satellite sites that changes over time.  

In the research by Bogning et al., (2018), the performance of the five altimetry missions 

was evaluated by comparing the results to records from gauge station measurements. A 

long-term and vastly better water-level time series was produced by combining the data 

from all of the radar altimetry missions. An improvement in water level peak to peak 

characterization and, consequently, a more precise annual discharge throughout the 

shared observation period between the altimetry-based and the in situ mean annual 

discharge are both produced by the increased data sampling in the river basin. 

This technique has however several limitations which includes dependence on quality 

of altimetry data over continental water bodies, unavailability of in-situ observations to 

develop rating curves, assumption of static rating curve while extending time series of 

discharge and temporal sampling rate (Papa et al., 2010).  
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2.4.1 Satellite Altimetry: Introduction and Working Principle 

At the end of the 1960s, satellite radar altimetry first appeared. Based on active 

microwave observations (or radar) methods, radar altimetry measures distance. The 

electromagnetic (EM) pulse is transmitted in the nadir direction by the radar sensor, 

which then accurately calculates the signal's two-way travel time (Δt). In order to record 

the radar echo or waveform, pulse compression and de-ramping methods are used. The 

waveform's amplitude and shape, which are connected to the backscattering coefficient, 

reveal details about the surface's makeup. When the received power reached the center 

of the leading edge at mid-height, the distance between the satellite and the surface, or 

altimeter range (R), corresponded to that epoch. It is estimated as  

𝑅 =
𝑐𝛥𝑡

2
         Equation 2-1 

  where c is the velocity of light in vacuum.  

The range must be adjusted for atmospheric propagation delays, instrument corrections, 

and surface geophysical adjustments in order to calculate the surface topography 

accurately (Frappart et al., 2017). Using an ellipsoid to represent the sea-surface height 

(SSH) over the ocean as shown in Figure 2-1 and the height of the reflecting surface (h) 

is then determined as;   

   ℎ = 𝐻 − 𝑅 −  ∆𝑅𝑖𝑜𝑛 −  ∆𝑅𝑑𝑟𝑦 −  ∆𝑅𝑤𝑒𝑡(−∆𝑅𝑠𝑠𝑏)   Equation 2-2 

where H is the height of the center of mass of the satellite above the ellipsoid estimated 

using precise orbit determination techniques 

R is the nadir altimeter range from the center of mass of the satellite to the surface 

considering instrumental corrections 

∆𝑅𝑖 are the corrections applied to the range and applied over all types of surfaces  

∆𝑅𝑖𝑜𝑛 is the atmospheric correction which is the atmospheric refraction range delay 

caused by the ionosphere's dielectric characteristics and free electron content 

∆𝑅𝑑𝑟𝑦 is the atmospheric refraction range delay caused by the troposphere's dry gas 

component 

∆𝑅𝑤𝑒𝑡 is the atmospheric refraction range delay caused by the tropospheric water 

content in clouds and water vapor 
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∆𝑅𝑠𝑠𝑏 is the range correction over oceans and great lakes which is the interaction of 

the altimeter's electromagnetic pulse with the scatterers within the footprint (e.g., wave 

and surface roughness effects) 

Figure 2-1 

The Principle of Radar Altimetry Measurement (Frappart et al., 2017) 

 

Originally, altimeter products have been used to monitor the surface elevation of oceans 

and study shows the rise in sea level is not constant. The pace of sea level rise in some 

areas (such as the western Pacific) is up to three times higher than the average rate 

worldwide which is shown in Figure 2-2. Later these altimetry satellite missions are 

being used for observation of large rivers and lakes for long-term observations of water 

level variations (Frappart et al., 2012). 

Figure 2-2 

Spatial trend patterns in sea level over January 1993-2014 based on multi-mission 

satellite altimetry (https://climate.esa.int/en/projects/sea-level/  )  

 

https://climate.esa.int/en/projects/sea-level/
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Satellite altimetry can help with hydrological research since it keeps track of surface 

water heights (Calmant & Seyler, 2006). Using specialized software like the Multi-

mission Altimetry Processing Software, a more accurate selection of valid data may be 

made in order to increase the accuracy of the water stages generated from altimetry. 

The accuracy and bias of water stages estimated from radar altimetry were evaluated in 

several studies and found to have good accuracy compared with in-situ observations 

(Biancamaria et al., 2017). 

2.4.2 Satellite Altimetry Products  

The time series of measurements of inland water levels that began with the launch of 

ERS-1 in 1991 and TOPEX/Poseidon in 1992 is continuously being extended by the 

availability of satellite altimetry from ERS-2 and ENVISAT as well as from Jason-1 

and Jason-2 (Birkinshaw et al., 2010).  

GEOS-3, SeaSat, Geosat, TOPEX/Poseidon, Geosat Follow-on, and Jason-1/2/3 from 

the National Aeronautics and Space Administration are among the previous and present 

satellite altimetry missions listed (NASA). These satellites include ERS-1/2, 

ENVISAT, CryoSat-2, and Sentinel-3 from the European Space Agency (ESA). Other 

missions, like the Chinese-planned HY-2A or the combined French-Indian 

SARAL/AltiKa project, are also in operation. The summary of satellite altimetry 

missions is shown in Table 2-1.  

Table 2-1 

Summary of Satellite altimetry missions (Jiang et al., 2017) 

Satellite Agency Period 
Altitude 

(km) 
Altimeter 

Frequency 

Used 

Repetitivity 

(Day) 

Equatorial 

Inter-

Track 

Distance 

(km) 

Skylab NASA 
May1973– 

February1974 
435 S193 Ku-band   

GEOS3 NASA 
April1975– 

July1979 
845 ALT 

Ku and 

C-band 
  

SeaSat NASA 
July– 

October1978 
800 ALT Ku-band 17  

Geosat US Navy 
October1985– 

January1990 
800  Ku-band 17  
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Satellite Agency Period 
Altitude 

(km) 
Altimeter 

Frequency 

Used 

Repetitivity 

(Day) 

Equatorial 

Inter-

Track 

Distance 

(km) 

ERS-1 ESA 
July1991– 

March2000 
785 RA Ku-band 35 80 

Topex/ 

Poseido

n 

NASA/ 

CNES 

September1992

– 

October2005 

1336 Poseidon 
Ku and 

C-band 
10 315 

ERS-2 ESA 
April1995-

July2011 
785 RA Ku-band 35 80 

GFO 
US Navy/ 

NOAA 

February1998– 

October2008 
800 GFO-RA Ku-band 17 165 

Jason-1 
CNES/ 

NASA 

December2001– 

June2013 
1336 

Poseidon-

2 

Ku and 

C-band 
10 315 

Envisat ESA 
March2002– 

April2012 
800 RA-2 

Ku and 

S-band 
35 80 

OSTM/ 

Jason-2 

CNES/ 

NASA/ 

Eumetsat/ 

NOAA 

Jun2008– 

present 
1336 

Poseidon-

3 

Ku and 

C-band 
10 315 

CryoSat-

2 
ESA 

April2010– 

present 
720 SIRAL Ku-band 369 7.5 

HY-2 China 
August2011– 

present 
971  

Ku and 

C-band 
14168  

Saral 
ISRO/ 

CNES 

February2013– 

present 
800 AltiKa Ka-band 35 80 

Jason-3 

CNES/ 

NASA/ 

Eumetsat/ 

NOAA 

January2016– 

present 
1336 

Poseidon-

3B 

Ku and 

C-band 
10 315 

Sentinel-

3A 
ESA 

February2016– 

present 
814 SRAL 

Ku and 

C-band 
27 104 

 

2.5 Multispectral Satellite Data for Monitoring River Discharge 

Recent developments in satellite sensors stimulated its use for river flow estimation due 

to their frequent revisit time and large spatial coverage, taking into account the daily 

river discharge measurement (Filippucci et al., 2022). Several studies have shown the 

possibility of discharge estimation from the space with their feasibility to monitor 

difficult river sites in medium-sized to large catchments from various sensors, including 



 

 15 

MODIS, MERIS, Landsat and OLCI datasets (Brakenridge & Anderson, 2006; Shi et 

al., 2020; Tarpanelli, Brocca, et al., 2013; Tarpanelli et al., 2020). Since discharge 

cannot be measured directly, hydraulic variables like river channel widths and the 

extent of surface water are measured using remote sensing data. This information can 

be gathered by synthetic aperture radar (SAR), visible spectrum digital imagery and 

they have been used to monitor the extent of a floodplain's inundation, cross section 

geometry and variation of water level with river extent (L. Smith & Pavelsky, 2008; 

Sun et al., 2010).  

There are two main approaches for monitoring river discharge via multispectral images. 

One method is to develop regression relationship between in-situ measured discharge 

and inundated channel reflectivity (including inundated and potentially inundated area 

of the river channel) and other is to develop regression relationship between river width 

and in-situ discharge. Both of these methods have been used successfully in various 

river for discharge estimation (Bjerklie et al., 2003; Li et al., 2019; L. C. Smith & 

Pavelsky, 2008; Tarpanelli, Brocca, et al., 2013) 

Brakenridge & Anderson (2006) proved the practical hydrological uses of the Moderate 

resolution Imaging Spectroradiometer (MODIS) sensor, including not only flood 

detection and characterization but also discharge estimates. They only provided one 

early example where MODIS approximated the discharge using a very short time period 

(about 30 data).   

Sichangi et al. (2018) computed temporal river width data from the MODIS images to 

derived river discharge. Only remote sensing data with NSE values larger than 0.5 at 

the analyzed sites were used to estimate discharge. The calculated velocity's values, 

which range from 0.63 to 1.2 m/s and 0.81 to 1.35 m/s, were found to be within the 

bounds of the expected velocity 0.96 m/s. The methodology for calculating discharge 

is a viable strategy for usage on rivers all across the world because it exclusively relies 

on global satellite databases. 

Sahoo et al. (2020) presented an integrated MODIS-Landsat fusion methodology and 

tested the method in eastern India's Brahmani River Basin to estimate high-frequency 

discharge. To increase the temporal resolution of the single datasets, a copula-based 

model was suggested, and the improved results were then shown. This study on the use 
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of many satellites for different missions demonstrated their value in improving flow 

monitoring, particularly in highly forested areas. 

2.5.1 NIR Band Reflectance as Proxy of Discharge  

Optical remote sensing sensors are the essential tools that measure various spectral 

signatures, according to wavelengths, that each sensor monitors reflected or emitted 

energy. However, optical remote sensing images are impacted by clouds, haze, and 

cloud shadows, making it difficult to distinguish between them and other dark objects 

like water and shadows (Zhu & Woodcock, 2012). In near infrared (NIR) wavelengths, 

water absorbs more energy (has a low reflectance), whereas non-water reflects more 

energy (high reflectance) because of the strong water absorption in NIR (Ahn & Park, 

2020). Any location that experiences flooding will have an increase in water surface, 

which will lower the area's NIR reflectance value as seen by the satellite. This different 

spectral characteristics of water bodies and other objects in near-infrared (NIR) images 

can be used to monitor variations in the river discharge (Shanlong et al., 2010).  

The Calibration/Measurement (C/M) technique makes use of the relationship between 

surface water extent dynamics and river flow. This method is based on the principle 

that the ratio of reflectivity from non-inundated area and the inundated area is positively 

correlated with river discharge. First, Brakenridge et al. (2007) used AMSR-E data at 

37 GHz to estimate river flows using the difference between the brightness temperature 

of a pixel over the river and a pixel over an unaffected pixel. Subsequently, MODIS 

sensor had been used successfully exploiting different behavior of land and water in 

NIR band for discharge estimation  (Sahoo et al., 2020a; Van Dijk et al., 2016). In 

contrast, if light, atmospheric scattering, or vegetation characteristics change and 

recorded radiances change simultaneously, the ratio stays fairly constant. Utilizing 

MODIS optical data to detect surface water changes economically and effectively is the 

paired-measurement method (Brakenridge et al., 2005).  

While many traditional sensors can readily capture surface water dynamics, the C/M 

technique has the benefit of requiring less data. The C/M technique may be broadly 

divided into two categories: one uses optical satellite data, such as the near-infrared 

(NIR) band of the Moderate Resolution Imaging Spectroradiometer (MODIS). The 

other uses microwave satellite data such as that from the Advanced Microwave 

Scanning Radiometer for the Earth Observing System (AMSR-E), to estimate discharge 
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and identify floods, even in rivers that are not gauged and are inaccessible. The AMSR-

E method of performing C/M is a more complicated procedure that necessitates other 

auxiliary data, such a precipitation dataset, at the same time (Temini et al., 2011).  

Tarpanelli, Brocca, et al. (2013) used this method and successfully predicted discharge 

for four sections of the Po River in northern Italy using M and C pixels from MODIS 

NIR images. This work has demonstrated that MODIS data may be used for ungauged 

river sites as well as medium-sized basins (<10,000 km2) with considerable temporal 

variability to provide reliable flow estimates.  

Shi et al. (2020) applied linear regression between C/M with observed discharge series 

using Harmonized Landsat and Sentinel-2 (HLS) surface reflectance product on 

relatively small rivers with 30~100 m widths in Murray Darling Basin, Australia to 

estimate river discharge. The results showed high consistency with the observed 

discharge.  

2.5.2 Satellite Optical Data Sets   

The multispectral image data can be obtained for different satellite missions. These data 

availability depends upon the orbital period of satellite and their spatial and temporal 

resolution. Terra and Aqua satellites both have the MODIS instrument in operation. 

Every one to two days, it observes the whole surface of the Earth within a 2330-

kilometer viewing swath. With three different spatial resolutions of 250 m, 500 m, and 

1000 m, its detectors measure 36 spectral bands between 0.405 and 14.385 m (MODIS 

Web).  Likewise the details of other satellite missions are provided below. 

S.N. Data Agency 

Equatorial 

cross-track 

separation 

(km) 

Spatial 

Resolution 

Temporal 

Resolution 
Period Source 

1 MODIS AQUA NASA 2330 250 m,  

500 m,  

 1000 m 

1 – 2 days 

May 2002 - 

Present 

https://lpdaa

c.usgs.gov/ 
2 MODIS TERRA NASA 2330 

Dec 1999 - 

Present 

3 Landsat ETM + 
NASA and 

USGS 
185 30m 16 days 

Apr 1999 – 

Sep 2021 

4 Sentinel 2 ESA 290 10 - 60 m 5 days 
June 2015 - 

Present 

https://sentin

els.copernic

us.eu/ 

5 Meris ESA 1150 300 m 3 days 2002 - 2012  
https://www.

esa.int/ 
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2.6 Multi-Mission Satellite Approach for River Discharge Estimation 

The estimations of discharge generated by combining the river stage level from satellite 

altimetry data with other space-based parameters, such as river width and river bed 

velocity from optical sensors and Synthetic Aperture Radar (SAR), ought to be superior 

to those based on a single parameter (Sichangi et al., 2016). Satellite altimetry has a 

relatively poor spatial sampling that corresponds to its ground track pattern ranging 

from 10 days for Jason series, 35 days for ERS, Envisat and Saral/AltiKa to 369 days 

for CryoSat-2 missions. Thus, multi-mission approach has been widely accepted and 

used in many studies to cope with the limitation of spatiotemporal resolution (Table 2-

2) of satellite altimetry and optical images.  

The approach involving use of altimetry and optical sensors for river discharge 

estimation has shown better performance in Niger and Po rivers with NSE of 0.98 and 

0.83 (Tarpanelli et al., 2019).   
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Table 2-2 

Previous Studies using multi-mission approach for discharge estimation 

Author Study Area Data Used Method Key Results 

Sichangi et 

al. (2016) 

Eight of the world's 

major rivers 

Envisat, Jason 2, 

MODIS and DEM 

River stage is incorporated with the 

effective river width and compared 

with empirical equation proposed by 

(Bjerklie et al., 2003) 

Improved prediction accuracy in 

most of the river. 

 

NSE varied between 0.6 and 0.97 

with R2 > 0.90. 

Huang et al. 

(2018) 

Upper Brahmaputra 

River, China   

Jason 2/3, Saral AltiKa 

Landsat 5/7/8 and  

Sentinel 2 images 

Modified Manning’s equation and 

Rating Curve  

The NSE vary between 0.65 to 

0.97 and RMSE vary between 

32.97 to 695 m3/s.  

Bjerklie et 

al. (2018) 

Yukon River, North 

America 

Jason 2 

Landsat 

Manning’s equation and  

Prandtl-Von Karman equation 

The calibrated discharge estimate 

showed the accuracy of +/- 2% 

Garkoti & 

Kundapura, 

(2021) 

Krishna River, 

India 

Jason 3, Sentinel 3A, 

Sentinel 3B, Sentinel 1 

and Sentinel 2 images 

Modified Manning’s equation 

The NSE vary between 0.53 to 

0.62 and R2 vary between 0.83 to 

0.97. 

Scherer et 

al. (2020) 

Lower Mississippi 

River 

Envisat, Jason-2/3, 

Sentinel-3A/3B, 

Landsat-4/5/7/8, 

Sentinel 2A/2B 

Manning’s equation 

Estimate 18 years discharge time 

series using satellite altimetry and 

remote sensing data with NRMSE 

7 – 35 % 
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2.7 Application of Artificial Intelligence in Hydrology 

John McCarthy first used the term "artificial intelligence" in 1956. The field of 

computer science known as artificial intelligence (AI) is concerned with the research 

and development of intelligent agents that can comprehend their surroundings and take 

actions that increase their chances of success. The definition of artificial intelligence 

(AI) is "the capacity to simultaneously hold two different ideas while retaining the 

capacity to function." However, AI must also have the capacity for inference, quick 

response, and learning from prior experience (Singh et al., 2013).  

Machine learning is an application to AI. It is the practice of assisting a computer in 

learning without direct instruction by applying mathematical models of data. As a 

result, a computer system can keep picking up new skills and getting better on its own. 

Using a neural network, which is a collection of algorithms based after the human brain, 

is one method for teaching a computer to imitate human reasoning. Machine learning 

has been effectively used in remote sensing for source separation, classification, 

regression, clustering, and coding (Camps-Valls, 2009).  

In order to predict different hydrological parameters, artificial neural networks (ANNs) 

are often and accurately employed; yet they are typically only created in one or two 

hidden layers. In order to successfully address complicated issues, deep learning 

networks have recently been enlarged with multi-layered design. A recent method of 

using ANNs is deep learning, which is a subfield of machine learning. It is used to 

represent complicated ideas by learning at various depths and levels. The unpredictable, 

complex, and nonlinear character of streamflow makes it viable to utilize AI-based 

modeling techniques. ANNs can mimic streamflow in particular using additional 

hydrological factors (Bengio, 2009; Ghumman et al., 2011).  

Finding a suitable deep-learning network to use is challenging. However, this variety 

and adaptability could occasionally result in choosing the incorrect type of network 

from among the many options. Recurrent neural network (RNN) types of neural 

networks are an excellent substitute for continuous (time-series) data, such as 

streamflow, according to recent research (Elumalai et al., 2017). Long-term 

dependencies between the network's inputs and outputs could be discovered through 

Long Short-Term Memory (LSTM). Better model performance has been achieved using 
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this method, highlighting the LSTM's potential for application in hydrological 

modeling applications (Kratzert et al., 2018).   

Several research have been done to address the application of machine learning in the 

field of hydrology. Some of the researches are discussed below: 

Esmaeilzadeh et al. (2017) used data-mining techniques such as ANNs, the M5 tree 

method, support vector regression, and hybrid Wavelet-ANN methods to estimate the 

daily flow to the Sattarkhan Dam in Iran. The wavelet artificial neural network 

(WANN) method outperformed other methods, according to the results, in estimating 

flow. 

According to Kratzert et al. (2018), who used the publicly available CAMELS dataset 

to model daily streamflow in 291 catchments, the LSTMs as individual catchment 

models performed better primarily in snow-driven catchments and worse in arid basins 

because long-term dependencies are more significant for snow-driven processes (e.g., 

snow accumulation and snowmelt). Additionally, the LSTM model outperformed the 

benchmark conceptual model by a small margin.  

Zhang et al. (2018) calculated water tables in agricultural areas using LSTM-RNN. 

They contrasted the simulation produced by LSTM-RNN with that produced by 

Multilayer Perceptron (MLP) and discovered that the former performed better than the 

latter. So, they suggested model can be used as a substitute for existing methods of 

estimating water table depth, particularly in locations where hydrogeological data are 

challenging to come by. 

Chiang et al. (2018) combined ensemble approaches into artificial neural networks in 

order to lower the level of model uncertainty in hourly streamflow projections in the 

Chinese watersheds of Longquan Creek and Jinhua River. Results showed that as 

compared to a single neural network, the accuracy of streamflow predictions was 

enhanced by roughly 19–37% by ensemble neural networks. 

According to Kao et al. (2020) the Shihmen Reservoir watershed in Taiwan experienced 

multi-step-ahead flood forecasting using the LSTM-based Encoder-Decoder (LSTM-

ED) model,. Results indicated that the suggested model may boost the interpretability 



 

 22 

of the model internals and raise the reliability of flood forecasting by converting and 

connecting the rainfall sequence with the runoff sequence. 

Cheng et al. (2021) developed three machine learning models using ANN, Support 

Vector Regression (SVR), and LSTM to anticipate discharge variation in North China 

and adequate accuracy was attained. The results showed that MLP performed 

marginally better than LSTM-RNN and much better than SVR. Additionally, it was 

shown that ANNs were more effective than other machine learning techniques for 

modeling and forecasting karst spring outflow. 

2.7.1 Long Short-Term Memory (LSTM)   

A unique variety of RNN, known as the LSTM architecture, a type of model or 

framework for sequential data, was created to address the typical RNN's inability to 

learn long-term dependencies. It implements gates that control "memory cells" using a 

unique combination of hidden units, elementwise products, and sums between units. 

These cells are made to store data unaltered over extended periods of time (Hochreiter 

& Schmidhuber, 1997). The key advantage of LSTM is that it can learn long-term 

dependence, which is not achievable with straightforward RNNs.  

Runoff was modelled for Fen River basin, China by Hu et al. (2018) using traditional 

ANN and LSTM models by and results showed LSTM performed better in terms of 

time series discharge simulation. The LSTM model is more cognitive than the ANN 

model, and the ANN model is more sensitive when compared to simulations of flooding 

events. 

Nogueira Filho et al. (2022) studied the application of LSTM as a regional method 

against traditional neural network (FFNN) and conceptual models in a data scare 

catchment. The LSTM model outperformed the Feedforward model in the specific 

catchment, demonstrating its ability to explain the hydrological dynamics of streamflow 

in semiarid areas. The performance of the neural networks trained with the 

regionalization data were better than the neural networks built for single catchments 

and the neural network approaches also exhibited the capacity to aggregate process 

understanding from diverse watersheds. 
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LSTM Architecture  

Figure 2-3 depicts the basic LSTM unit, which consists of a cell with an input gate, 

output gate, and forget gate. To handle the disappearing or ballooning gradient problem, 

LSTMs employ the idea of gating (Greff et al., 2017). Each of the three gates can be 

thought of as a typical artificial neuron, computing an activation (using an activation 

function) of a weighted sum of the current data xt, a hidden state ht-1 from the previous 

time step, and any bias b. The cell is in charge of remembering values over arbitrary 

time intervals (Ordóñez & Roggen, 2016).  

Figure 2-3 

Illustration of a Long-Short Term Memory unit 

 

 

 

Forget gate determines what information must be remembered and what can be 

forgotten. The sigmoid function receives data from the current input Xt and the hidden 

state ht-1. The values that Sigmoid produces range from 0 to 1. It draws a conclusion on 

the necessity of the old output's portion (by giving the output closer to 1). The cell will 

eventually utilize this value of ft for point-by-point multiplication. 

 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 
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Input gate performs the following operations to update the cell status.  

First, the second sigmoid function receives two arguments: the current state Xt and the 

previously hidden state ht-1. Transformed values range from 0 (important) to 1. (not-

important). 

The tanh function will then get the identical data from the hidden state and current state. 

The tanh operator will build a vector (Ct) containing every possible value between -1 

and 1 in order to control the network. The output values produced by the activation 

functions are prepared for multiplication on a point-by-point basis. 

 

 

Output gate determines the value of the next hidden state. Information about prior 

inputs is contained in this state. 

First, the third sigmoid function receives the values of the current state and the prior 

hidden state. The tanh function is then applied to the new cell state that was created 

from the original cell state. These two results are multiplied one by one. The network 

determines which information the hidden state should carry based on the final value. 

For prediction, this concealed state is employed. 

The new hidden state and the new cell state are then carried over to the following time 

step. 

 

 

At conclusion, the forget gate selects whatever pertinent information from the earlier 

processes is required to conclude. The output gates complete the next concealed state, 

while the input gate determines what pertinent information may be supplied from the 

current stage. 

 

 

 

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) 
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2.8 Relevant studies in Mekong River Basin  

Several studies have been conducted in Lancang Mekong River Basin for the estimation 

of river discharge using remote sensing. Some of them are discussed. 

Multi mission radar altimetry has been used to develop multiple rating curve and 

combined in an Ensemble Learning Regression method to estimate discharge (ELQ) at 

three locations: Stung Treng, Kratie, and Tan Chau in Lower Mekong River (Kim et 

al., 2019). Since the ELQ approach corrects for deterioration in the performance for Q 

estimation caused by the poor rating curve with virtual stations far from in-situ Q 

stations, various H derived from Jason-2 altimetry were employed in this study 

regardless of distances from in-situ Q stations. Compared to data obtained from a single 

rating curve, the ELQ estimated discharge revealed more accurate results. 

Birkinshaw et al. (2014) estimated discharge for ten years at Nakhon Phanom and 

Vientiane on the Mekong River using (Bjerklie et al., 2005) equation. Landsat satellite 

imagery was utilized to offer a variety of channel widths over a stretch of river, while 

ERS-2, ENVISAT, and satellite altimetry data were used to produce a time series of 

river channel water levels and the channel slope. The performance evaluation gave 

Nash–Sutcliffe efficiency value of 0.90 for Nakhon Phanom and 0.86 for Vientiane to 

obtain river discharge.  

A novel decile thresholding method was developed by Mengen et al. (2020) using the 

concept of at-many-stations hydraulic geometry (AMHG) in Mekong River. The peak 

flows are virtually always underestimated even though the decile thresholding method 

produces good results in the low-flow range. The decile thresholding discharge 

estimation outperformed the Gleason and Wang's optimized AMHG technique, with an 

RRMSE of 19.5 percent for the overall examined period and 16 percent for just the dry 

seasons. 

However, the discharge estimated by above and other studies are site specific only and 

no studies have been carried out to develop regional model for whole river. This study 

is intended to develop a single regional model which can be used to predict discharge 

at ungauged sites of the river.  
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CHAPTER 3 

STUDY AREA AND DATA    

3.1 Study Area    

Large rivers including the Yangtze, Salween, Irrawaddy, Red River, and Mekong 

originate on the Tibetan Plateau. The Mekong drains an area of around 795,000 km2 

from its source and travels south for another 5000 km to the sea. It rises on the Tibetan 

Plateau and flows through the Yunnan Province of China, Myanmar, Laos, Thailand, 

Cambodia, and Vietnam. The country wise areas in the Mekong River Basin is shown 

in Table 3-1 . The Greater Mekong River can be divided into two basins: the Upper 

Basin, where the river is known as the Lancang and is located in Tibet and China; and 

the Lower Mekong Basin, which runs from Yunnan to the Sea (Figure 3-1). 

Figure 3-1 

Map of Study Area 
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Table 3-1 

Country wise area in the Mekong River Basin 

Basin 
Area 

(km2) 
Countries 

Area of 

country in 

basin (km2) 

% of the 

total area of 

the basin 

% of the 

total area of 

the country 

Mekong 795,000 

China 165,000 21 2 

Myanmar 24,000 3 4 

Lao PDR 202,000 25 85 

Thailand 184,000 23 36 

Cambodia 155,000 20 86 

Vietnam  65,000 8 20 

The Upper Basin (China and Myanmar), which contributes around 15% of the flow, 

accounts for 24% of the entire catchment. There are no large tributaries, therefore all 

future water resource development will follow the main Mekong. On the other hand, 

the Lower Mekong Basin is also nourished by sizable tributaries, which account for 

around 85% of the annual flow. 

3.1.1 Climate  

In the region upstream, the climate is cold, whereas in the region downstream, the 

climate is tropical. Yunnan province in southern China's Upper Basin also experiences 

monsoons, though there are significant topographic variations. Yunnan has a variety of 

climates, from subtropical and tropical monsoons in the south to temperate monsoons 

in the north. However, in Yunnan province, there is a significantly broader variance 

from year to year in the timing of the start of the southwest monsoon, which affects the 

pattern of rainfall in the Upper Basin of China. Although yearly levels drop to as little 

as 600 mm in the north, the seasonal pattern of rainfall is the same as for the Lower 

Basin. The variations in climatic zones of the Lancang Mekong Basin is shown in 

Figure 3-2. 

The southwest monsoon, which typically lasts from May through late September or 

early October and coincides with the Lower Basin's flood season, dominates the 

region's climate. In most areas of the basin, there are frequent periods of intense rainfall 

lasting one or two days. The wettest months of the year are August, September, and in 

the delta even October due to tropical cyclones that affect most of the region later in 

the season. Less than 1,500 mm of rain fall each year averages throughout the floodplain 

of Cambodia and the Mekong Delta, while more than twice that amount falls in the 
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Central Highlands of the Lao People's Democratic Republic and inside the major valley 

at Pakse (MRC 2005). The precipitation between upper Mekong and Lower Mekong is 

quite different and presented in Table 3-2.  

Figure 3-2 

The Climatic zones of the Lancang Mekong Basin (He et al., 2009)  

 

Table 3-2 

Monthly Average Precipitations in the Mekong River Basin (in mm) (He et al., 2009) 

 

3.1.2 Hydrology  

The Mekong River ranks eighth in the global basins with a mean annual flow into the 

South China Sea of around 14,500 m3/s. Although the flow from the Upper Basin makes 

up just 13% of the normal annual flow, it may make up to 30% of the flow during the 
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dry season (MRC 2010).  A large network of tributaries makes up the Mekong River 

basin, creating several sub-basins. In the Lower Basin, significant tributary networks 

emerge. These systems may be split into two categories: those that contribute to the 

main rainy season flow and those that drain low relief areas with lesser rainfall. Tropical 

monsoonal regions are typically characterized by an abundance of water and a relatively 

consistent flow pattern. However, the flow continues to vary dramatically from year to 

year (MRC, 2018). The estimated mean annual flow of the basin is almost 460 km3 and 

of the total annual flow, in an average year about 75 per cent occurs within just four 

months between July and October. 

The mean annual runoff in the basin is shown in Figure 3-3. In the Lancang Mekong 

watershed, river discharge rises sharply from north to south, with significant regional 

variations which is shown in Figure 3-4.  

Figure 3-3 

Mean Annual Runoff in the Mekong River Basin (MRC, 2010) 
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Figure 3-4 

Maximum, minimum and mean annual flows at sites along the Lancang Mekong River 

(He et al., 2009) 

 

3.1.3 Land use and Land cover  

The river and its tributaries are constrained by narrow, steep gorges in the upper 

Mekong River Basin. In this region of the basin, there are few tributary river systems. 

The river alters as the floodplain widens, the valley expands, and the river widens and 

slows. Soil erosion is the main issue here. The primary determinants of the river's 

hydrology are the climate, geography, and land use of the lower Mekong Basin. The 

soils recover after upland shifting agriculture (slash and burn), but the vegetation takes 

much longer. Similar to other areas of the basin, shifting and permanent cultivation 

have gradually decreased the amount of forest cover over the past three decades. Over 

the past 50 years, Thailand's Lower Basin regions have had the greatest rate of forest 

cover loss among all the countries along the Lower Mekong. The land use and land 

cover map of the Mekong Basin is presented in Figure 3-5.  

The most prevalent soil types are salty and sandy, making a large portion of the area 

unsuitable for growing wet rice. However, agriculture is intense despite the low fertility. 

The main crops are cassava, maize, and glutinous rice. The main hydrological risk in 

this area is drought. 
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Figure 3-5 

Land Use and Land Cover Map of Mekong River Basin (MRC, 2010) 

 

3.2 Data  

3.2.1 In-situ River Discharge  

In this study, in-situ data of daily discharge is obtained from Mekong River 

Commission (MRC) (https://mrcmekong.org/) both for training and validation 

purposes. Nine locations on Mekong River is used whose details is shown in Table 3-3 

and is sorted according to the river’s flow direction (1-9). These hydrological stations 

represent the different hydrological characteristics in the basin. These data are used to 

develop a regional model. Further, last two-gauge data (10-11) is used to validate the 

predictive accuracy of regional model. The location of these stations is indicated in 

Figure 3-1. 
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Table 3-3  

List of in Situ Gauge Stations in the Mekong Mainstream used this Study 

S.N. Name of Station 
Station 

Code 

Basin 

Coverage 
Location 

Streamflow 

Record 

km2 
Latitude 

(°N) 

Longitude 

(°E) 
 

1 Chiang Saen TH_010501 213027 20.273 100.083 

Jan 1, 2002 

to 

Dec 31, 2018* 

2 Luang Prabang LA_011201 237938 19.892 102.137 

3 Nong Khai TH_012001 304990 17.887 102.739 

4 Nakhnon Phanom TH_013101 353753 17.40 104.800 

5 Mukdahan TH_013402 399746 16.540 104.737 

6 Pakse LA_013901 510889 15.117 105.800 

7 Stung Treng KH_014501 624016 13.545 106.017 

8 Kratie KH_014901 726763 12.240 105.987 

9 Tan Chau VN_019803 768492 10.803 105.243 

10 Jinghong CN_092600 153386 22.00 100.770 

11 Chiang Khan TH_011903 295193 17.884 101.612 

*The period varies based on data availability 

3.2.2 Satellite Altimetry Data for Water Level   

This study uses Jason-1/2, Envisat and Saral altimetry products to derive time series 

water level from 2002 to 2018 since these datasets are freely available by the service 

provider. Also, from these altimetry products, sufficient virtual stations is located along 

the Lancang Mekong River. Figure 3-6 shows the altimeter tracks crossing Lancang 

Mekong River and Virtual Stations. Envisat provides data from 2002 to 2010 and has 

an orbital period of 35 days. The 18-Hz along-track range data in the Geophysical Data 

Record (GDR), which is publicly available from the Center for Topographic Studies of 

the Ocean and Hydrosphere (CTOH; http://ctoh.legos.obs-mip.fr/data/alongtrack-

data/datarequest) is used for Envisat.  

Jason-1 and Jason-2 orbit at an altitude of 1336 km, with an inclination of 66°, on a 10-

day repeat cycle, providing observations of the Earth surface (ocean and land) from 66° 

latitude North to 66° latitude South, with an equatorial ground-track spacing of about 

315 km.  
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A collaboration between Centre National d’Etudes Spatiales (CNES) and the National 

Aeronautics and Space Administration (NASA) launched the Jason-1 mission on 

December 7th, 2001. The Jason-1 mission's sensors are based on the Poseidon-2 

altimeter, a two-frequency altimeter with C (5.3 GHz) and Ku (13.575 GHz) bands that 

was part of the previous Topex/Poseidon missions. Along with the Jason Microwave 

Radiometer from NASA, the Doppler Orbitography and Radio-positioning Integrated 

by Satellite (DORIS) instrument from CNES, the Black Jack Global Positioning System 

receiver from NASA, and a Laser Retroflector Array (LRA) from NASA/Jet Propulsion 

Laboratory (JPL) make up its payload, which allows for precise orbit determination. 

Jason-1 was decommissioned on June 21, 2013, and it stayed in its intended orbit until 

26 January 2009. 

Figure 3-6 

Virtual Stations Track along the Lancang Mekong River 
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A collaboration between CNES, NASA, Exploitation of Meteorological Satellites 

(EUMETSAT), National Oceanic and Atmospheric Administration (NOAA) launched 

Jason-2 mission on June 20, 2008. The Advanced Microwave Radiometer (AMR) from 

JPL/NASA, the Global Navigation Satellite System (GNSS), and an LRA from 

JPL/NASA make up most of its payload, which also includes the real-time monitoring 

system DIODE of DORIS device from CNES, a GNSS transceiver from NASA/JPL, 

and the Poseidon-3 radar altimeter from CNES. Jason-2 remained in its nominal orbit 

until 3 July 2016. 

SARAL (Satellite with ARgos and ALtiKa) is a mission jointly undertaken by the 

Indian Space Research Organisation (ISRO) and Centre National d'Études Spatiales 

(CNES) to study ocean circulation and sea surface elevation through altimetric 

measurements. The mission was launched on 25 February 2013, and its prime payload, 

the ALtiKa altimeter, is the first spaceborne altimeter to operate at Ka-band. The 

ALtiKa altimeter was designed and built by CNES, and is a key component of the 

SARAL mission. Table 3-4 provides the major characteristics of altimetry missions 

used in this study.  

Table 3-4 

Major Features of the Radar Altimetry Missions used in this Study 

Mission Jason-1/2/3 ENVISAT Saral 

Instrument 

Poseidon-2 

 

Poseidon-3 

 

Poseidon-3B 

Radar Altimeter 

(RA-2) 
Altika 

Space agency 

Centre National 

d’Etudes Spatiales 

(CNES) 

 

National Aeronautics 

and Space 

Administration 

(NASA)  

European Space 

Agency (ESA) 

Centre National 

d’Etudes Spatiales 

(CNES) 

Indian Space Research 

Organization (ISRO) 

Operation 

2001–2013 

 

Since 2008 

 

Since 2016 

2002–2012 Since 2013 
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Mission Jason-1/2/3 ENVISAT Saral 

Acquisition mode 
Low Resolution Mode 

(LRM) 
LRM Pulse Limited Mode 

Acquisition Along-track Along-track Along-track 

Frequency (GHz) 

13.575 (Ku) 

 

5.3 (C) 

13.8 (Ku) 

 

13.575 (Ku) 

 

3.2 (S) 

35.75 (Ka) 

Altitude (km) 1315 800 800 

Orbit inclination 

(°) 
66 98.55 98.55 

Repetitively (days) 9.9156 35 35 

Equatorial cross-

track separation 

(km) 

315 80 80 

 

3.2.3 Satellite Optical Data Sets   

The different satellite missions used in this study for the optical images are moderate-

resolution imaging spectroradiometer (MODIS); MODIS AQUA and TERRA. Due to 

the coarse spatial resolution, MODIS has provided better results in large rivers with a 

width of more than 100 m for C/M estimation and thus selected for Mekong River. The 

optimal location for selecting wet pixel is the river area and inundation sensitive area 

during flood events ensuring minimum vegetation coverage while for dry pixel, area 

should be located far from river area preferably urban areas (Shi et al., 2020; Tarpanelli, 

Brocca, et al., 2013). 

 The MODIS is among the sensors on board the Earth Observing System (EOS) Terra 

(since 1999) and Aqua (since 2002) satellites. Due to its high temporal resolution of 1-

2 days with occasionally two passes during a day at mid-latitude (3 h apart from each 

other), its moderate spatial resolution (2 channels at 250 m, 5 at 500 m, and 29 at 1 km), 

and its high spectral resolution of 36 bands ranging in wavelength from 0.4 m to 14.4 

m, it is widely used for monitoring a variety of terrestrial, atmospheric, and ocean 

phenomena. This study uses level-2 products MOD09GQ and MYD09GQ from 

TERRA and AQUA, respectively, at daily resolution. 
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Table 3-5 provides the major characteristics of optical satellite sensors used in this 

study.  

Table 3-5 

Major Features of the Optical Satellite Sensors used in this Study 

Optical Sensor Product 
Band (Spectral 

range in nm) 

Temporal 

Resolution (days) 

Spatial 

Resolution (m) 

MODIS AQUA MYD09GQ 2 (841-876) 1-2 250 

MODIS TERRA MOD09GQ 2 (841-876) 1-2 250 

 

3.2.4 Basin Characteristics  

The characteristics of basin draining to each of the hydrological stations used in this 

study are used as an input to LSTM model while developing regional model. The 

parameters that are used are catchment area, catchment centroid latitude, catchment 

centroid longitude, average catchment elevation, difference between highest and lowest 

elevated points in a catchment, average catchment slope, curve number and average 

mainstream bed slope gradient. The parameters are computed from available DEM and 

land use data. 
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CHAPTER 4 

METHODOLOGY     

The general procedure for river discharge estimation is shown in Figure 4-1. The details 

of the methodology are explained in this chapter. Long Short-Term Memory machine 

learning algorithm is employed for predicting river discharge and is evaluated. The 

input to the model is water level data obtained from satellite altimetry, reflectance ratio 

of dry and wet pixels from optical images and other catchment parameters. The 

performance of the model to simulate river discharge is evaluated using different 

statistical indicators.  

Figure 4-1 

Overall Methodological Framework for the study 

 

 

 

4.1 Estimation of water level at different stations in Mekong River       

The methodological approach to estimate the water level at different reach of river using 

multi-mission satellite altimetry is shown in Figure 4-2. 
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Figure 4-2 

Methodological Approach to Estimate Water Level using Satellite Altimetry 

(Objective 1)  

 

4.1.1 Time Series Water Level from Satellite Altimetry 

Particularly in inaccessible and complex areas, satellite remote sensing offers the 

exceptional opportunity to acquire freely accessible water level heights. Numerous 

altimetric missions, including TOPEX/Poseidon, Jason-1/2/3, ERS-1/2, Environmental 

Satellite (Envisat), CryoSat-2, SARAL/AltiKa, and Sentinel 3A, 3B, have contributed 

data over the past two decades that can be utilized to track the behavior of water bodies 

on Earth (Garkoti & Kundapura, 2021). The increased accuracy of the altimetry sensors 

encourages its use as a validation tool for many applications, from straightforward 

routing approaches to complex hydraulic models, and recent advancements in radar 

altimetry technology provide crucial information for river water level monitoring 

(Domeneghetti et al., 2015; Schneider et al., 2017).  

The water surface level is calculated from multiple satellite altimetry data at the 

corresponding time. Altimeter measurements of surface topography are distorted, and 

thus corrections are applied. For example, atmospheric propagation effects in the 
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troposphere and the ionosphere, electromagnetic bias, residual geoid errors, and inverse 

barometer effects can all distort measurements (Sichangi et al., 2016). Considering 

propagation delays from the interactions of electromagnetic waves in the atmosphere 

and geophysical corrections, the height of the reflecting surface (H) with respect to a 

reference ellipsoid is estimated. Thus, the types of corrections to be applied are 

geophysical corrections for wet troposphere, dry troposphere, ionosphere, solid earth 

tides and pole tides. The accuracy of obtained water level is evaluated comparing with 

in-situ water level for available locations. 

4.1.2 Densification of Altimetry derived Time Series Water Level at In-situ Stations 

Multi-mission altimetry products are used to increase the temporal resolution of water 

level in this study. The time series water level is derived at various Virtual Stations 

(VS) from different satellite missions. The water level obtained from different satellite 

mission have bias within due to mission's geophysical data and these intersatellite bias 

is estimated and removed and other errors of the altimetry data is corrected as 

mentioned. Then, the Virtual Stations (VS) are connected hydraulically and statistically 

using an algorithm developed by (Tourian et al., 2016, 2017) using the time series water 

level data, river width and slope. For this, time lag between virtual stations is estimated.  

The time lag between VSs is determined using the anticipated river width and the slope 

obtained from satellite altimetry using the Equation 4-1.  

     𝑇𝐿 =
𝐿

𝐶
=  

𝐿

𝑏𝑉
             Equation 4-1 

 Where, 𝑇𝐿 is travel time, L is the distance between the virtual stations, c is celerity, 

b = constant=5/3 and V is the velocity.  The velocity is computed by the Equation 4-2  

developed by (Tourian et al., 2016). 

      𝑉 = 1.48𝑊−0.8𝑆0.6          Equation 4-2 

where, W refers to river width and S is the slope of the river.  

Then, at any location along the river, integration of all the altimetric readings is done 

by stacking all the obtained altimetric measurements at a reference location by shifting 

the water level hydrographs of all virtual stations according to corresponding time lag. 

The measurement is merged by normalizing the time series in accordance with their 
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statistical properties. The readings are rescaled down to their actual water level values 

after an outlier identification procedure. 

River Width Estimation: 

Google Earth Engine (GEE) based river width algorithm RivWidthCloud developed by 

Yang et al. (2020) is used to extract river centerline and width from remotely sensed 

images. The simplicity of usage based on a well-liked cloud computing environment 

GEE and the flagging power to automatically reduce negative impact from cloud and 

shadows are two key advantages of RivWidthCloud over previous river width 

measuring techniques. These benefits spare users the expense of downloading, storing, 

and locally processing remote sensing data, enabling them to easily extract common 

width statistics and time series. 

Firstly, extraction of river mask from satellite image is done. Then, river centerline from 

the river mask is derived and river width along the centerline is obtained at each river 

section. To calculate the river width, for each centerline pixel the direction orthogonal 

to the local centerline is computed at first and then river width along these orthogonal 

directions is computed. The extracted centerline is also used to define the along-river 

coordinate distance between Virtual Station (VS)s and to compute the slope.    

4.2 Daily discharge estimation by merging satellite optical and altimetry data  

The methodological framework to accomplish this objective is shown in Figure 4-3. 

The surface reflectance between water and land from Near Infra-Red (NIR) band of 

optical sensors will have different pixel values. The water pixel (M) has lower 

reflectance than land pixel (C) in which reflectance value of water pixel decreases with 

flooding events while land pixel doesn’t vary much and assumed to be constant 

(Tarpanelli et al., 2017). Thus, measuring time series variation in reflectance of water 

pixel with respect to land pixel helps to provide variation in river discharge indirectly.  

The ratio between the spectral reflectance of the C and M pixels should theoretically 

allow a minimizing of the atmospheric effects because disturbances derived from the 

atmosphere influence both C and M in the same way (Tarpanelli, Brocca, et al., 2013). 

The values of C/M increase with the presence of water and, hence, with discharge. 

Hence, ratio of C and M is taken as the proxy for measurement of river discharge.  
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Figure 4-3 

Methodological Framework for Discharge Estimation Merging Optical Sensor Data 

and Altimetry Data (Objective 2) 

 

A cloudy sky, on the other hand, renders the optical pictures useless and causes data 

outages in the measurements. Also, the selected location of C and M pixels may also 

affect the accuracy of discharge estimation. The data from more satellite missions of 

the same kind might be gathered and combined to provide the necessary information as 

a feasible solution in these circumstances. Thus, this study used Long Short Term 

Memory (LSTM) approach to combine observations from optical sensors with altimetry 

data for estimation of river discharge to overcome these issues.  

4.2.1 C/M from Satellite Optical Data Sets    

The ratio of the surface reflectance of a land pixel named C (calibration), situated close 

to the river in an area free of surface water even during high flooding, and of a water 

pixel named M (measurement), situated within the river with the permanent presence 

of water, is computed. Figure 4-4 shows the typical representation of wet and dry pixel 

reflectivity. First, the cloud-affected pixels are located and eliminated. Then, the 

location for selecting M and C pixels is chosen. The optimal site for wet pixel M is next 

to a river in a region that is both entirely submerged in water and sensitive to changes 

in the flooded area during flood occurrences. The calibration's dry pixel C is situated 

outside the river, above urban areas that are not impacted by the seasonal cycle of 

vegetation, and in places that are not surrounded by water.  
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Figure 4-4 

A representation of wet and dry pixel reflectivity 

 

 

To create a time series of C/M, multiple images for the study period are evaluated. 

Then, to reduce the noise effects due to atmospheric contribution, time series of C/M is 

smoothed with a low pass filter (averaging moving window) to get C/M*.  

4.2.2 Merging Multiple Satellite Datasets    

All the datasets should have common time series for successful merging of different 

data from various sources. While the water level altimetry time series is restricted to 

the passage of satellites over the river, the C/M* ratio retrieved from optical satellite 

sensors is impacted by cloudy images. These circumstances result in missing data, 

which breaks up the time series. In addition, the accuracy of the altimetry multi-mission 

satellites might vary based on the altimeter utilized and the number of satellites 

available at the same time. Due to the satellites' repetition cycle, the time series 

generated by optical sensors have different temporal resolutions. When compared to 

altimetric time series, MODIS-derived time series have a better temporal resolution. 

The expected temporal resolution of MODIS-derived data is approximately 2 to 3 days.  

Therefore, to overcome this issue, all satellite data sets is interpolated at the daily scale 

to provide time series with the same frequency that are consistent with the temporal 

resolution of ground observations. Daily data gaps are linearly filled up by interpolating 

values between the closest previous and next values.  
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The LSTM methodology is used to carry out the merging process. With this method, 

data from many sources is combined into a single retrieval strategy by simply adding 

or removing inputs from the LSTM configuration and updating the training 

accordingly. The daily data sets function the inputs to the LSTM: river water level and 

C/M*. The number of hidden layers and hidden neurons is established by trial-and-error 

procedure. The training set and validation set is sampled randomly.  

Long Short-Term Memory (LSTM): 

LSTM networks are specifically designed to learn long-term dependencies and can 

overcome the problems of vanishing and exploding gradients. LSTM networks are 

composed of an input layer, one or more memory cells, and an output layer (Zebin et 

al., 2018). The number of neurons in the input layer is equal to the number of 

explanatory variables. The main characteristic of LSTM networks is contained in the 

hidden layer consisting of so-called memory cells. Each of the memory cells has three 

gates maintaining and adjusting its cell state st: a forget gate (ft), an input gate (it), and 

an output gate (ot). 

At every time-step t, each of the three gates is presented with the input xt (one element 

of the) as well as the output ht−1 of the memory cells at the previous time-step t−1. 

Hereby, the gates act as filters, each fulfilling a different purpose: 

• The forget gate defines what information is removed from the cell state. 

• The input gate specifies what information is added to the cell state. 

• The output gate specifies what information from the cell state is used 

 

Each of the gates has parameters for its weights and biases, giving many parameters for 

deep networks with many units’ present. The weights of these connections are learned 

or updated during the training of the network. 

4.2.3 Evaluation of the performance of Long Short-Term Memory (LSTM) Model 

The performances of the LSTM model to simulate discharge at various sites of Lancang 

Mekong River is evaluated based on the correlation coefficient (R), coefficient of 

determination (R2), Nash-Sutcliffe efficiency (NSE) and percent bias (PBIAS), and 

visual interpretation using a line diagram and scatter diagram. This is done by 

comparing the observed discharge at in-situ stations with simulated discharge.  
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𝑅2 =  
𝑛 ∑ 𝑄𝑖

𝑜𝑏𝑠𝑄𝑖
𝑝𝑟𝑒−∑ 𝑄𝑖

𝑜𝑏𝑠 ∑ 𝑄𝑖
𝑝𝑟𝑒

(√𝑛(∑ 𝑄𝑖
𝑜𝑏𝑠)2−(∑ 𝑄𝑖

𝑜𝑏𝑠)
2

)∗(√𝑛(∑ 𝑄𝑖
𝑝𝑟𝑒)2−(∑ 𝑄𝑖

𝑝𝑟𝑒)
2

)

     Equation 4-3    

𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑖

𝑜𝑏𝑠− 𝑄𝑖
𝑠𝑖𝑚)𝑛

𝑖=1

2

∑ (𝑄𝑖
𝑜𝑏𝑠− 𝑄𝑖̅̅ ̅𝑜𝑏𝑠

)𝑛
𝑖=1

2           Equation 4-4 

𝑃𝐵𝐼𝐴𝑆 =  
∑ (𝑄𝑖

𝑜𝑏𝑠− 𝑄𝑖
𝑝𝑟𝑒)𝑛

𝑖=1 ∗100

∑ (𝑄𝑖
𝑜𝑏𝑠)𝑛

𝑖=1

           Equation 4-5 

where, 𝑄𝑖
𝑜𝑏𝑠  is observed discharge, 𝑄𝑖

𝑝𝑟𝑒  is predicted discharge and 𝑄𝑖̅
𝑜𝑏𝑠

 is the 

average observed discharge.  

Coefficient of Determination (R2): 

The coefficient of determination describes the statistical relationship between the 

variables and helps to show the nature of association among the predicted and observed 

data. R2 is the ratio of explained variation compared to the total variation. It ranges from 

0 to 1; its higher value indicates less error variance, and generally, a value greater than 

0.5 is considered acceptable. This statistical tool is highly sensitive to outliers and 

insensitive to additive and proportional differences between observed and predicted 

data. 

Nash-Sutcliffe Efficiency (NSE): 

The Nash-Sutcliffe Efficiency (NSE) is a metric used to evaluate the agreement 

between observed and simulated data. The NSE value ranges from negative infinity to 

1, with a value of 1 indicating a perfect match between the simulated and observed data. 

In contrast, if the NSE value is negative, it implies that the average observed value 

provides a better estimate than the model, indicating poor predictions (Nash & Sutcliffe, 

1970). 

Percent Bias (PBIAS): 

Percent bias measures the relationship between the observed data and its predicted data; 

it measures the average tendency of observed data to be larger or smaller than the 

predicted data. Percent bias describes whether the simulated model is overestimated or 

underestimated. A low PBIAS value or a value that tends to zero indicates the optimal 

model. A negative value indicates the overestimation of the model. In contrast, a 
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positive PBIAS value indicates an underestimation of the model. When the data are 

evaluated, PBIAS reveals any deviation of the data as a percentage. 

A model with higher R2 and NSE values, and PBAIS values, decrees a relatively better 

model for the simulation of discharge. 

4.3 Development of a regional model for estimation of the river discharge  

The methodological framework to achieve this objective is presented in Figure 4-5.     

Figure 4-5  

Methodological Framework for Development of Regional Model for Discharge 

Estimation (Objective 3) 

 

There are limited number of hydrological gauging stations in Mekong River, and it is 

not always feasible to measure discharge at every location in the river reach. On other 

hand, it is not always easy to obtain gauge data due to various reasons. However, 

developing regional model considering parameters obtained from remote sensing and 

catchment characteristics for entire basin will help to predict discharge at any required 

location without physically being present. The initial lists of catchment parameters that 
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are expected to have impact on discharge are provided in Table 4-1. Sensitivity analysis 

of these parameters is carried out to obtain most sensitive parameters that will have 

profound effect on discharge and final catchment parameters are obtained.  

Then, a regional model will be established by integrating the catchment parameters 

along with time series water level and C/M* for nine in-situ stations within the river 

reach. This model could then be applied simply but with strong predictive power to 

estimate catchment-scale discharge in ungauged reach of Lancang Mekong River. 

Physical catchment descriptors and model parameters are known to be interdependent. 

Also, it is well known that their interactions are highly nonlinear; therefore, LSTM can 

be a suitable tool for the regionalization of model parameters (Soni et al., 2021). Thus, 

the integration will be done using the best selected machine learning approach from 

Section 4.2.3. The performance of regional model will be tested against other two 

gauged hydrological stations to check the predictive accuracy using the statistical 

indicators. 

Table 4-1  

Basin attributes and parameters used for regionalization    

S.N. Parameters Acronym Remarks 

1 Catchment Area CA  

2 Catchment centroid latitude LAT  

3 Catchment centroid longitude LON  

4 Average catchment elevation AE  

5 
Difference between the highest and lowest 

elevated points in a catchment 
RE  

6 Average Catchment slope  SC  

7 Curve Number  CN  

8 Average mainstream bed slope gradient SL  
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CHAPTER 5 

RESULTS AND DISCUSSIONS      

5.1 Water Level Estimation from Satellite Altimetry 

Satellite altimetry offers near-global profile data along tracks, confined solely by the 

satellite's orbital parameters, yet restricted to its ground track by the nadir-only 

measurement capability of the sensors. Thus, initially location where the path of 

satellites intersected with Lancang Mekong river were focused. These points were 

designated as Virtual Stations (VS) and water level data was collected for each of these 

virtual stations using satellite altimeter missions from ENVISAT, Jason-1, Jason-2, and 

SARAL. This data was then processed and analyzed to gain insight into the water levels 

at 54 different Virtual Stations. The location of virtual stations for different altimetry 

are presented in Figure 5-1 and details are presented in Table 5-1. Radar altimeters do 

not determine the range value at each point by direct measurement. Instead, they rely 

on the echo of a radar signal to extract the range value. The data rate for each of these 

missions differ, with ENVISAT having 18 Hz, Jason-2 having 20 Hz, and 

SARAL/AltiKa having 40 Hz, resulting in along-track distances of 380 m, 294 m, and 

173 m respectively between altimeter measurements. 

Figure 5-1  

The ground track and the selected virtual stations from Jason-1/2 (left) and ENVISAT, 

SARAL (right) 
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Table 5-1  

List of virtual station along with chainage and location along Mekong River    

SN Chainage (km) Satellite Mission Track Number Latitude Longitude 

1 0 Envisat/Saral 0737 30.231 97.922 

2 18 Jason 129 30.105 97.992 

3 255 Envisat/Saral 0008 28.544 98.797 

4 464 Envisat/Saral 0466 27.161 99.152 

5 495 Jason 140 26.955 99.176 

6 523 Jason 205 26.735 99.140 

7 742 Envisat/Saral 0924 25.254 99.379 

8 836 Envisat/Saral 0380 24.744 99.970 

9 847 Envisat/Saral 0193 24.730 100.078 

10 873 Jason 140 24.744 100.218 

11 980 Jason 140 24.119 100.504 

12 1037 Envisat/Saral 0193 23.812 100.308 

13 1159 Jason 027 23.009 100.254 

14 1159 Envisat/Saral 0838 23.009 100.255 

15 1282 Envisat/Saral 0193 22.256 100.693 

16 1300 Envisat/Saral 0193 22.116 100.727 

17 1303 Envisat/Saral 0294 22.116 100.755 

18 1460 Envisat/Saral 0193 21.356 100.912 

19 1586 Envisat/Saral 0294 20.825 100.441 

20 1601 Envisat/Saral 0737 20.786 100.331 

21 1712 Envisat/Saral 0294 20.393 100.337 

22 1742 Envisat/Saral 0737 20.192 100.474 

23 1840 Envisat/Saral 0752 19.879 100.931 

24 1885 Envisat/Saral 0193 19.826 101.281 

25 1933 Envisat/Saral 0208 19.883 101.652 

26 1947 Jason 103 19.934 101.762 

27 1970 Envisat/Saral 0651 20.027 101.951 

28 2045 Envisat/Saral 0651 19.819 102.001 

29 2233 Envisat/Saral 0193 18.427 101.614 

30 2363 Envisat/Saral 0193 17.923 101.733 

31 2403 Envisat/Saral 0666 18.078 101.940 

32 2476 Envisat/Saral 0651 17.982 102.437 

33 2509 Envisat/Saral 0122 17.833 102.603 

34 2590 Jason 140 18.126 103.077 
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SN Chainage (km) Satellite Mission Track Number Latitude Longitude 

35 2595 Envisat/Saral 0107 18.151 103.117 

36 2662 Envisat/Saral 0580 18.426 103.460 

37 2699 Envisat/Saral 0565 18.346 103.788 

38 2720 Jason 179 18.334 103.934 

39 2753 Envisat/Saral 0036 18.117 104.107 

40 2845 Envisat/Saral 0494 17.537 104.688 

41 2847 Envisat/Saral 0021 17.531 104.700 

42 2894 Envisat/Saral 0021 17.140 104.792 

43 3006 Envisat/Saral 0021 16.262 104.996 

44 3027 Envisat/Saral 0952 16.105 105.070 

45 3190 Jason 001 15.323 105.561 

46 3196 Envisat/Saral 0408 15.326 105.610 

47 3394 Envisat/Saral 0866 13.782 105.972 

48 3592 Envisat/Saral 0021 12.262 105.915 

49 3624 Envisat/Saral 0866 12.296 105.634 

50 3664 Jason 140 12.013 105.473 

51 3698 Envisat/Saral 0565 11.938 105.268 

52 3886 Envisat/Saral 0866 10.783 105.292 

53 3947 Envisat/Saral 0565 10.409 105.613 

54 3986 Envisat/Saral 0322 10.274 105.898 

 

Each VS is in fact formed as a box sized with corresponding river width (Figure 5-2). 

However, since ground tracks cross the river at non perpendicular angles at most VSs, 

the size of VS is sometimes different from the river width. The water level time series 

at the VS locations are then obtained by averaging only the water related measurements 

inside the VS boxes. 
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Figure 5-2  

The ground track of two cycles of Jason-2 representing water related measurement 

around virtual station 

 

The missions ENVISAT and SARAL succeeded the previous mission ERS-2, 

employing the same orbital configuration with a cross-track resolution below 80 km 

and a repeat cycle of 35 days. ENVISAT was equipped with a dual frequency radar 

altimeter that operated in Ku and S bands. However, in 2010, its orbital height was 

lowered, resulting in a different repeat cycle and ground tracks. The study utilized only 

the high frequency (18 Hz) Ku-band data collected from 2002 to 2010 during regular 

operation mode. The altimetry data were stored in the Sensor Geophysical Data Records 

(SGDRs) format and contained parameters such as satellite position and timing, 

distance between satellite and surface, and corrections. The ENVISAT had four 

different ranges calculated by standard waveform retracking algorithms, including 

Ocean, ICE-1, ICE-2, and SEAICE. The ICE-1 retracker was initially developed to 

observe ice sheets but was used in this study to calculate range measurements for inland 

waterbodies due to their similar waveform. 

Jason-2, launched in June 2008, is the successor to the previous missions 

Topex/Poseidon and Jason-1. It employs the same orbital configuration with a cross-
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track resolution of less than 315 km and a repeat cycle of 10 days. To estimate water 

levels, high-frequency ranges from Sensor Geophysical Data Records (SGDR) 

altimeter products are used. However, it is known that switching retracking algorithms 

along a single satellite track results in height offsets. To avoid these offsets, ICE1 

retracker is used to obtain all altimeter range measurements of a specific inland water 

body under investigation. By accounting for the propagation delays of electromagnetic 

waves due to their interaction with the atmosphere and geophysical entities, a formula 

is employed to estimate the height of the reflecting water surface relative to an ellipsoid 

or a geoid. 

h = H−R−Cionosphere−Cdrytroposphere −Cwettroposphere−CsolidEarthtide−Cpoletide 

where h is the height of reflecting water surface (water body or river section), H is the 

altitude of satellite with reference to an ellipsoid, R is the altimeter range, Cionosphere is 

the correction for delayed propagation through the ionosphere, Cdrytroposphere and 

Cwettroposphere are corrections for delayed propagation in the troposphere from pressure 

and humidity variations, respectively, and CsolidEarthtide and Cpoletide are corrections that 

account for crustal vertical motions from the solid and polar tides, respectively. 

One of the primary obstacles encountered was the challenge of comparing water level 

measurements obtained from different satellite missions, taken at various locations and 

with different characteristics. The issue of intersatellite biases made it challenging to 

combine water level measurements from different altimetry missions. Furthermore, 

errors in atmospheric corrections and data interpolation along the track can lead to 

significant inaccuracies, especially in inland water bodies and rivers where the 

topography is non-uniform (Tourian et al., 2016). To address the issue of intersatellite 

bias, relevant studies were consulted to obtain the necessary information, which was 

then applied accordingly. 

With this, water level is obtained for 54 virtual stations along the Mekong mainstream. 

The temporal resolution of obtained water level is 10 days for Jason and 35 days for 

ENVISAT and SARAL. Then, these water levels are transferred to the location of in-

situ gauging stations following the densification procedure described by Tourian et al., 

2016 where data from multiple satellite altimeters at VSs are connected and more 

detailed water level time series are obtained.  
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This approach utilizes ancillary measurements of average river width and slope, which 

are fed into a simple empirical hydraulic equation (based on Bjerklie et al. 2003). This 

equation estimates both the average flow velocity and the time lag caused by 

streamflow between the altimetric virtual stations and the chosen location along the 

river. Each measurement is then adjusted by the estimated time lag and shifted at the 

designated location. The resulting time series is standardized between the 3rd and 85th 

percentiles and any outliers are removed using Student's t test. Finally, the time series 

is scaled to match the statistical water level distribution at the selected location. 

Figure 5-3 shows the altimetry derived water level and observed water level at two 

gauging stations: Pakse and Kratie. The correlation between observed and derived 

water level is 0.96 and 0.92 for Pakse and Kratie respectively.  

Figure 5-3  

The altimetry derived water level compared with observed water level at Pakse and 

Kratie 

   

5.2 Discharge Modelling using Water Level and Optical Datasets 

This study uses ratio of surface reflectance from dry and wet pixel (C/M) and altimetry 

derived water level as major inputs for river discharge estimation. The performance of 

discharge estimation with C/M ratio from AQUA and TERRA satellite and combined 

with altimetry water level is carried out by comparing with observed discharge as well. 

 

5.2.1 Time Series C/M* from Optical Datasets 

The ratio of reflectance from more stable land pixel (C) and variable water pixel (M) in 

Near Infrared (NIR) band of optical images serves as an indicator of discharge variation. 

This principle is adapted to train LSTM model and predict discharge based on remote 

sensing data. For each optical dataset AQUA and TERRA, all images were processed 

and analyzed using Google Earth Engine (GEE) platform and Python 3.9. Location of 
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C and M pixel plays pivotal role in discharge estimation and this needs to be carefully 

determined. Here, the locations of C and M pixels were determined adopting the method 

described by Tarpanelli, Brocca, et al., 2013.  

An area with 38 x 38 pixel surrounding the gauging station is selected for each 

investigating stations. At first, cloudy images were filtered; the pixel with a value of 

band 1 higher than 0.2 were excluded since optical images are contaminated by clouds 

and their shadows which impacts surface reflectance values whereas band 2 provides 

the river discharge signal. Also, visual inspection was done to analysis of cloud free 

images. The total number of images after the cloud filtering is reduced to almost 50%. 

The mean temporal resolution was decreased to ~2 days from ~1 day. So, linear 

interpolation was applied to obtain daily time series data. Table 5-2 shows the number 

of images selected for analysis for each station.  

Table 5-2  

The number of images selected for analysis for each station.   

Station Period 
Total Number 

of Images 

Selected Images 

Aqua Terra 

M Pixel C Pixel M Pixel C Pixel 

Chiang Saen 2003 - 2021 6939 4272 4318 3875 3804 

Luang Prabang 2003 - 2018 5844 3366 3482 2929 2927 

Nong Khai 2003 - 2021 6939 3952 3698 3717 3550 

Nakhon Phanom 2003 - 2021 6939 3304 3526 3650 3706 

Mukdahan 2003 - 2021 6939 3092 3141 3595 3396 

Pakse 2003 - 2018 5844 2950 3158 3071 3261 

Stung Treng 2003 - 2021 6939 3594 3743 3536 3683 

Kratie 2003 - 2021 6939 3630 3878 3713 3998 

Tan Chau 2003 - 2021 6939 3424 3387 3607 3498 

 

To best locate C and M pixel for each gauging stations, C/M ratio was computed for 

each pixel within the box obtaining [38 x 38] x [(38 x 38) - 1] time series C/M ratios. 

Here, each pixel of the box was assumed to be M and remaining pixel as C and hence 

C/M time series were calculated in all the pixels. Similarly, the ratio was calculated for 
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all pixels of the box i.e., 1443, assuming M and varying the C location, following the 

procedure as above. 

Obtained C/M ratios were correlated with in-situ discharge and maximum coefficient 

of correlation for each pixel was obtained. Finally, best correlated combination of C 

and M pixel were selected for discharge estimation. Figure 5-4 shows the best location 

of C and M pixel for each gauging stations. The coefficient of variation for C pixel is 

below 0.3 and relatively stable while that for M pixel shows higher variability.  

Best location for C Pixels were obtained near to the urban areas or densely vegetated 

areas with lower coefficient of variations of surface reflectance whereas best location 

for M Pixel were obtained near the river flood plain portions where higher sensitivity 

to water variability is expected.  

Figure 5-4  

Maps of median value of Reflectance of band 2 (first column), coefficient of variation 

of Reflectance (second column), coefficient of correlation between C/M and discharge 

(third column) and the location of the C and M pixel having maximum correlation is 

shown with the satellite image corresponding to the selected box (fourth column) 
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Although the C/M ratio helps to reduce the noise in the surface reflectance 

measurements, C/M fluctuates quickly over time and seems to be unstable. An 

exponentially smoothing filter was added to the C/M ratio to reduce the effects of short-

term and observation noises and C/M* was computed for each gauging stations. The 
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correlation between satellite data and observed discharge for each gauging stations is 

improved after filtering of C/M ratio. Figure 5-5 shows the comparison of correlation 

between observed data and C/M* with C/M at seven reaches of the Mekong River. It 

can be observed the correlation coefficient is improved from 0.44 – 0.63 to 0.64 – 0.76 

for AQUA products. However, for TERRA products, the coefficient of correlation 

improved from 0.55 – 0.76 to 0.63 – 0.83. It is notable to observe that TERRA products 

are highly correlated with observed discharge in the Lancang Mekong Basin.  

Figure 5-5  

Coefficient of correlation between C/M, C/M* and observed discharge at seven 

gauging stations within the Mekong River for AQUA and TERRA satellite data 
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Table 5-3 summarizes the coefficient of correlation between observed discharge and 

reflectance ratio for each gauging stations.  
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Table 5-3  

Coefficient of Correlation between C/M and C/M* with Observed Discharge.   

Station 
Aqua Terra 

C/M C/M* C/M C/M* 

Chiang Saen 0.59 0.64 0.59 0.63 

Luang Prabang 0.29 0.43 0.49 0.66 

Nong Khai 0.51 0.71 0.50 0.72 

Nakhon Phanom 0.50 0.71 0.55 0.73 

Mukdahan 0.36 0.64 0.42 0.69 

Pakse 0.50 0.67 0.62 0.78 

Stung Treng 0.44 0.66 0.58 0.71 

Kratie 0.69 0.79 0.76 0.83 

Tan Chau 0.63 0.76 0.64 0.72 

 

Thus, time series C/M* is obtained for each gauging station on daily resolution for each 

AQUA and TERRA satellite products. Then, this time series C/M* are used as input 

for developing LSTM model for each of the gauging stations.  

 

5.2.2 Discharge prediction with C/M* using LSTM model 

 Data Preprocessing: 

In this study, three LSTM model are developed for seven gauging stations using 

AQUA, TERRA and combined AQUA-TERRA products as input features for LSTM 

model. Before using data with an LSTM model, it is important to preprocess it to make 

it suitable for the model to work with. This included cleaning and normalizing the data, 

breaking it down into smaller units, making sure all data has the same length, separating 

it into training and test sets, and creating vector representation of the input features. 

Data Scaling: 

Scaling helps to standardize the range of independent variables and improves the 

performance and interpretability of ML algorithms. Additionally, it can speed up the 

training process and improve the numerical stability of optimization algorithms. The 

commonly used techniques in data scaling are Standardization and Normalization or 

Min-Max scaling. Standardization assumes that the data will have a bell-shaped 

distribution and changes the values to have a mean of zero and standard deviation of 
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one. Min-Max scaling, on the other hand, transforms the values ranging between 0 and 

1. In this research, input features were Min-Max scaled. 

Windowing of input data: 

The next step included preparing input data for predictions/forecasts using a sliding 

window technique where past observations were grouped to predict/forecast future 

discharge. Since the current state of a watershed is dependent on the past behavior of 

the system, the input features are reorganized using window size (Figure 5-6). This 

creates fixed-length vectors that machine learning model can use to find patterns and 

relationships in past observations to make future discharge predictions. Various 

configuration of window size was checked for discharge prediction during 

hyperparameter tuning and look back window size of 5 days was adopted in this study 

for discharge prediction. 

 

Figure 5-6  

Schematic representation of the sliding window approach used in this study 

 

 

Data Splitting 

Data splitting in an LSTM model is the process of dividing a dataset into multiple 

subsets that are used for training, validation, and testing. The training dataset represents 

the portion of the data that is utilized to train the ML algorithm by learning from 

historical data to estimate the parameters of the model, thus allowing for effective 

predictions when the machine learning model is subsequently exposed to previously 

unseen data. The validation dataset, on the other hand, is employed to optimize the 

model's hyperparameters. The test dataset, in contrast, is utilized solely for the 

evaluation of the algorithm after the model has been fully trained and optimized. 

The most common data splitting method for LSTM models is to use a train-test split, 

where a portion of the data is used for training the model and the remaining portion is 

used for testing. The train-test split is typically done in a random manner, so that the 
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model is trained and tested on different data each time. When splitting data for an LSTM 

model, it is important to ensure that the split preserves the temporal order of the data if 

the data is a time series. Thus, in this research training set and test set were prepared 

from each alternate days which accounted 50% of total data as training set and 

remaining as test set. Alternate days was selected to preserve all characteristics of input 

feature during the training process. A separate validation set was used taking 10% of 

training data to evaluate the model's performance during the training process before 

testing. 

 Model Development: 

The LSTM model was implemented in Keras with TensorFlow backend and 

computational code was implemented in Python 3.9. The LSTM architecture consists 

of three main components: the input gate, the forget gate, and the output gate. Each 

component is made up of a sigmoid layer and a dot product operation. The input gate 

controls the amount of information that is allowed to flow into the cell state, the forget 

gate controls the amount of information that is kept in the cell state, and the output gate 

controls the amount of information that is output from the cell state. The cell state is a 

memory unit that can retain information over a longer period. The output of the LSTM 

cell is passed through a fully connected layer with a linear activation function to 

produce the final output. 

After preprocessing the input feature, LSTM network architecture was defined. 

Defining the architecture of an LSTM model involves several important decisions. The 

first included determining the number of layers to use in the model. LSTM models can 

have one or more layers, with each layer containing multiple LSTM cells. Each layer 

can extract different levels of abstraction from the input data. More layers can capture 

more complex patterns, but it also increases the risk of overfitting. In this study, two 

layers were implemented.  

The next step was determining the number of neurons in each layer. The number of 

neurons in each layer will affect the model's capacity to learn and represent the 

underlying patterns in the data. Determining the number of neurons in each layer of an 

LSTM model is crucial for optimal performance. The complexity of the problem and 

the dimensionality of the input are key factors that should be considered when deciding 

on the number of neurons. Additionally, a larger number of neurons in a layer can 
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increase the capacity of the model to learn more complex representations, however, it 

can also lead to increased computation and the risk of overfitting. Therefore, the number 

of neurons was carefully chosen to strike a balance between model performance and 

computational efficiency.  

Another important decision is choosing the type of activation function to use in the 

LSTM cells. The activation function controls the output of each neuron, and it is used 

to introduce non-linearity in the model. The activation functions used in this study is 

Leaky ReLu. This activation function is selected because Leaky ReLU mitigates the 

"dying ReLU" problem by allowing a small negative slope for negative input values, 

thus preventing the gradients from becoming negligible. This facilitates the training 

process by enabling the network to learn more complex representations, whilst 

remaining computationally efficient. Additionally, it is a simple and straightforward 

modification to implement. 

Dropout regularization can be added to the LSTM model to prevent overfitting by 

randomly dropping out some neurons during the training process. Overfitting occurs 

when a model becomes too complex and starts to memorize the training data instead of 

generalizing to new data. Dropout works by randomly dropping out (setting to zero) a 

certain percentage of the neurons during training. This forces the remaining neurons to 

adapt and learn more robust features, making the model less sensitive to the specific 

training data. Additionally, dropout also increases the diversity of the models, which 

can lead to better generalization performance. By adding dropout to LSTM models, it 

helps to prevent overfitting and improve the overall performance on unseen data. 

Hyperparameter tuning is done in LSTM to find the optimal combination of 

hyperparameters that results in the best performance on the validation set. It is crucial 

for LSTM model because it can significantly impact the performance of the model. 

Hyperparameter tuning is the process of adjusting the parameters of a machine learning 

model that are not learned from the data during training in LSTM. It involves training 

the LSTM model multiple times with different combinations of hyperparameters and 

evaluating the model's performance on a validation set to find the optimal combination. 

There are different methods for hyperparameter tuning such as Grid Search, Random 

Search and Bayesian Optimization. 
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Hyperparameter tuning was performed in this research to optimize LSTM model 

performance. The hyperparameters used for tuning include the number of neurons per 

layer, the learning rate, the batch size, the dropout rate, number of epochs, window size 

and the number of layers. To perform the tuning, grid search method and manually trial 

and error method was explored for the different combinations of the hyperparameters. 

Grid search is a simple and exhaustive method of searching through a predefined range 

of hyperparameters by specifying a set of values for each hyperparameter and training 

the model for each combination of those values. This process allowed to test a wide 

range of combinations and determine the optimal set of hyperparameters that resulted 

in the best performance on the validation set. 

After the optimal combination of hyperparameters was determined, the final LSTM 

model was trained using these hyperparameters on the entire training set and evaluated 

on the test set to report the final performance of the model. It's worth noting that the 

process of hyperparameter tuning can be computationally time-consuming, but it is 

crucial for LSTM model to achieve the best performance. Table 5-4 summarizes the 

optimal parameters of LSTM model used in this research.  

Figure 5-7 shows the performance of LSTM model in terms of loss and mean squared 

error with increasing number of epochs. It is observed the model performance has 

improved with increasing number of epochs and stabilizes with epochs about 800. Thus 

the number of epoch considered for training of LSTM model in this study is taken as 

800.  

Figure 5-7  

Model Loss and Mean Squared Error during training and Validation 
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Table 5-4  

Optimized Hyperparameters for LSTM Model Development.   

Station 
No. of 

Hidden Layer 

No. of 

Units 

Window 

Size 

Batch 

Size 

Optimizer / 

Activation 

Function 

Chiang Saen 1 16 5 5 

Adam /  

Leaky ReLu 

Luang Prabang 1 16 4 5 

Nong Khai 1 16 5 5 

Nakhon Phanom 1 16 1 1 

Mukdahan 1 16 5 5 

Pakse 1 16 1 1 

Stung Treng 1 16 5 5 

Kratie 1 16 1 1 

Tan Chau 1 16 1 1 

 

 Discharges Prediction using Optical Datasets 

The LSTM model was able to identify patterns and relationships in the data that were 

not immediately apparent, which has the potential to lead to new insights. For analyzing 

the performance of discharge simulated by single product and combined product, model 

was trained using Aqua and Terra products separately at first and then was trained using 

combined input from Aqua and Terra products. Then, model was tested for next set of 

data which were not used during the training period. To include all pattern and 

seasonality of the data, model was trained using data for alternate days and tested for 

next alternate days.  Overall, the results from the model are promising and indicate 

robustness of using optical data for discharge estimation. Figure 5-8 shows the 

comparison between the observed and simulated discharge using LSTM for input 

features from MODIS AQUA, TERRA and combination of both.  
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The Table 5-5 provides the performance of different products (Aqua, Terra and 

combination of Aqua and Terra) in different stations (Chiang Saen, Luang Prabang, 

Nong Khai, Nakhon Phanom, Mukdahan, Pakse, Stung Treng, Kratie and Tan Chau) 

for simulated discharge compared with the observed discharge. The three input features 

used are Aqua, Terra, and combined Aqua and Terra products. The results for each 

station have been tabulated separately for both the training and testing periods. The 

evaluation has been done in terms of Coefficient of Correlation (R), Coefficient of 

Determination (R2), Nash–Sutcliffe Efficiency (NSE), and Percent Bias. 

In terms of the correlation coefficient, the results show moderate to strong positive 

correlations between simulated and observed discharge for most of the stations. The 

results indicate that combined input feature of Aqua and Terra product shows the 

highest correlation coefficient values between simulated and observed discharge, 

ranging from 0.70 to 0.88, for all the nine stations. For the Aqua product, the correlation 

coefficients range from 0.49 to 0.78, and for the Terra product, the correlation 

coefficients range from 0.63 to 0.86. The highest correlation coefficient of 0.88 was 

observed for the Kratie station with the Aqua+Terra product, while the lowest 

correlation coefficient of 0.49 was observed for the Luang Prabang station with the 

Aqua product. 

The coefficient of determination values is positive for all stations and products, 

indicating that the simulated discharge data explains some portion of the variance in the 

observed discharge data. The coefficient of determination values ranges from 0.24 to 

0.77 for Aqua, 0.39 to 0.73 for Terra, and 0.46 to 0.77 for combined Aqua and Terra. 

The combined Aqua and Terra product generally showed higher R-squared values than 

the individual Aqua and Terra products, indicating that the combination of both 

products leads to a better fit between the simulated and observed discharge data. 

However, the R-squared values are generally lower than the corresponding correlation 

coefficients, indicating that the simulated discharge data does not explain all the 

variance in the observed discharge data. 

The Nash–Sutcliffe Efficiency (NSE) values for combined Aqua and Terra are also the 

highest among the three input features for most of the stations, indicating better 

performance in simulating the observed discharge. The value of NSE across all stations 

and products ranges from 0.23 to 0.76. The highest NSE value of 0.76 is achieved by 
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combined Aqua and Terra products at Kratie station, while the lowest NSE value of 

0.23 is achieved by Aqua at Luang Prabang station during both calibration and 

validation period. In general, the combined Aqua and Terra product outperforms both 

Aqua and Terra products separately in terms of NSE values. 

The Percent Bias (PBIAS) values for all the three products are negative, indicating 

underestimation of the simulated discharge in Chiang Saen, Nakhon Phanom, Stung 

Treng and Kratie stations. However, for remaining stations, PBIAS values are positive 

indicating overestimation of simulated discharge compared to observed discharge. The 

magnitude of the PBIAS values varies greatly across stations and products. The PBIAS 

varies across all stations and products range from -1.21 % to 25.12%. The highest 

PBIAS value of 25.12% is found for Aqua product at Mukdahan station, while the 

lowest PBIAS value of -1.21 % is found for Aqua product at Stung Treng station. 

Thus, the results highlight the importance of using multiple products for simulating 

discharge and the benefits of combining them. The combined Aqua and Terra product 

shows the highest correlation coefficient, coefficient of determination, and Nash–

Sutcliffe Efficiency values for all the nine stations. It is worth noting that, the 

performance of simulated discharge is found to be better in the downstream reaches 

compared to upstream reaches Chiang Saen and Luang Prabang. Further this provides 

insight on exploring the potential of using other combinations of satellite products or 

incorporating other data sources to improve the accuracy of discharge simulation. 
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Figure 5-8  

Observed and Simulated Discharge using LSTM for MODIS-AQUA and MODIS-TERRA and combination of both. 
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Table 5-5  

Performances of simulated discharge with observed discharge using MODIS Aqua,  

Terra and combination of both.   

Station Product 
Training Testing 

R R2 NSE PBIAS R R2 NSE PBIAS 

Chiang 

Saen 

Aqua 0.65 0.42 0.41 -5.97 0.64 0.41 0.40 -5.76 

Terra 0.63 0.40 0.38 -9.11 0.63 0.39 0.37 -9.33 

Aqua + Terra 0.70 0.49 0.47 -9.40 0.70 0.48 0.46 -9.53 

Luang 

Prabang 

Aqua 0.49 0.24 0.23 4.98 0.49 0.24 0.23 4.96 

Terra 0.67 0.45 0.44 4.48 0.67 0.45 0.44 4.22 

Aqua + Terra 0.71 0.50 0.48 6.37 0.71 0.51 0.49 5.96 

Nong Khai 

Aqua 0.75 0.56 0.55 6.95 0.75 0.56 0.55 7.03 

Terra 0.75 0.57 0.56 4.23 0.75 0.57 0.56 4.43 

Aqua + Terra 0.81 0.66 0.65 4.89 0.81 0.65 0.65 5.04 

Nakhon 

Phanom 

Aqua 0.73 0.54 0.50 -12.56 0.73 0.54 0.50 -12.64 

Terra 0.75 0.56 0.52 -13.74 0.75 0.56 0.52 -13.75 

Aqua + Terra 0.83 0.69 0.67 -9.96 0.83 0.69 0.67 -10.03 

Mukdahan 

Aqua 0.71 0.50 0.43 24.40 0.71 0.50 0.42 25.12 

Terra 0.75 0.57 0.55 10.03 0.76 0.57 0.55 9.95 

Aqua + Terra 0.82 0.68 0.66 13.29 0.82 0.68 0.65 13.61 

Pakse 

Aqua 0.74 0.55 0.55 2.56 0.74 0.55 0.55 2.63 

Terra 0.81 0.66 0.65 3.56 0.81 0.66 0.65 3.57 

Aqua + Terra 0.85 0.72 0.71 2.45 0.85 0.72 0.71 2.45 

Stung 

Treng 

Aqua 0.70 0.48 0.48 -1.21 0.70 0.49 0.49 -1.26 

Terra 0.70 0.49 0.43 17.78 0.70 0.49 0.43 17.75 

Aqua + Terra 0.78 0.61 0.61 -3.90 0.78 0.61 0.61 -3.84 

Kratie 

Aqua 0.84 0.71 0.70 -7.18 0.84 0.71 0.70 -7.25 

Terra 0.86 0.73 0.71 -9.18 0.86 0.73 0.71 -9.19 

Aqua + Terra 0.88 0.77 0.76 -9.41 0.88 0.77 0.76 -9.42 

Tan Chau 

Aqua 0.78 0.61 0.59 -8.30 0.78 0.61 0.59 -8.30 

Terra 0.77 0.60 0.54 15.26 0.77 0.60 0.54 15.22 

Aqua + Terra 0.80 0.64 0.63 1.92 0.80 0.64 0.63 2.04 
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5.2.3 Discharge prediction with Water Level and C/M* using LSTM model 

The Table 5-6 shows the results of simulated discharge compared with observed 

discharge for two different stations, Pakse and Kratie. The comparison was done for 

two different cases: using water level only as input feature and using a combination of 

Aqua, Terra, and water level as input features. Four metrics were used to evaluate the 

accuracy of the simulated discharge: Coefficient of Correlation (R), Coefficient of 

Determination (R2), Nash–Sutcliffe Efficiency (NSE), and Percent Bias. 

 

For the Pakse station, both cases produced similar results for training and testing 

periods, with R values of 0.96 and R2 values of 0.92 for first case and R values of 0.97 

and R2 values of 0.94 for second case. The NSE values are above 0.90 for both cases, 

indicating good agreement between simulated and observed discharge. However, there 

was a difference in the PBIAS values, with values of 9.26 and 12.64 during testing 

period and 9.37 and 12.81 for testing period for the water level only and the combined 

case, respectively. This suggests that the combined case may slightly overestimate the 

discharge. However, in terms of other performance indicators, combination of Aqua, 

Terra and water level outperformed use of single water level only for discharge 

estimation.  

 

For the Kratie station, trend of results is similar to Pakse in terms of correlation 

coefficient, coefficient of determination and Nash Sutcliff Efficiency but the magnitude 

of performance indicators are lower than Pakse. However, in terms of percent bias, the 

simulated discharge is slightly underestimated by about 0.25 % which is far better than 

Pakse for combined input features during both training and testing period. This suggests 

that the combined case may slightly underestimate the discharge in Kratie station. 

 

Overall, the results indicate that the combination of Aqua, Terra, and water level data 

produced better results than the single water level, as evidenced by higher R, R2, and 

NSE values for both stations.  

 

Figure 5-9 shows the graphical comparison between simulated discharge and observed 

discharge at Pakse and Kratie for both cases. It can be noted, water level only has 

underestimated high flows but with combined input of multiple products, these peak 
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flows have been better predicted. This can be due to missing water level attributed by 

temporal resolution of satellite altimetry and fulfilling this gap by use of reflectance 

ratio which have better temporal resolution. This also highlights the importance of using 

multisource remote sensing data for discharge prediction. 

 

Figure 5-9  

Observed and Simulated Discharge using LSTM for Water Level and combination of 

Water Level, MODIS Aqua and Terra. 

 

  

   
 

Table 5-6  

Performances of Simulated Discharge with observed discharge using Water level and 

combination of Water Level, MODIS Aqua and Terra.   

 

Station Product 
Training Testing 

R R2 NSE PBIAS R R2 NSE PBIAS 

Pakse 

WL 0.96 0.92 0.91 9.26 0.96 0.92 0.91 9.37 

WL + Aqua + 

Terra 
0.97 0.94 0.92 12.64 0.97 0.94 0.92 12.81 

Kratie 

WL 0.92 0.84 0.84 2.78 0.92 0.84 0.84 2.89 

WL + Aqua + 

Terra 
0.95 0.90 0.90 -0.26 0.95 0.90 0.90 -0.25 
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CHAPTER 6 

CONCLUSIONS      

The following outputs are anticipated after the successful completion of proposed 

study:  

1. Time series water level can be estimated from the satellite observations with 

good accuracy and use of multiple altimetry missions helps to increase the 

temporal resolution of water level in Mekong River.  

2. The combination of multiple optical sensors provided better performance in 

simulating discharge compared to use of single sensor. This is demonstrated by 

combined use of MODIS Aqua and Terra products which have predicted 

discharge with higher performance indices at all reaches of Mekong River 

compared to individual Aqua and Terra products.  

3. The multi mission approach which uses optical and radar altimetry within 

LSTM model demonstrated its effectiveness in estimating river discharge at two 

locations along the Mekong River. 
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CHAPTER 7 

TIME SCHEDULE      

The overall timeline of the study is presented below:  
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